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Can we reverse this loop?

for i in [1, 4]:
S: A[i] = A[i - 1]
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Do these loops have the same behavior?

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]
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Lets look at the program traces

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]
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The sets of statements are the same in each 
one

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]
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Only the order changes

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]
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So when we change the order, does anything 
go wrong?

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]
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So when we change the order, does the 
program’s behavior change?

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]
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So when we change the order, are any 
dependencies violated?

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]
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A[0]A[1]
A[1]A[2]
A[2]A[3]
A[3]A[4]

readwrite



Yes

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]
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For example

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]
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Now lets formalize this 
analysis a little more
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We are given an original program

for i in [1, 4]:
S: A[i] = A[i - 1]
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And a candidate target program

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]
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Both of them define execution traces that 
contain the same set of statements

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]
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{ S[i] | 1 <= i <= 4 } { S[i] | 1 <= i <= 4 }



The control logic defines the order in which 
statements are executed

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]
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{ S[i] | 1 <= i <= 4 } { S[i] | 1 <= i <= 4 }

{ S[i] -> i } { S[i] -> 5 - i }



The schedule and memory access pattern of the 
original program define a set of data 
dependencies

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]
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{ S[i] | 1 <= i <= 4 } { S[i] | 1 <= i <= 4 }

{ S[i] -> i } { S[i] -> 5 - i }

{ S[i] -> S[i + 1] | 1 <= i <= 3 }



Construct the set of all violated dependencies 
in the new schedule

The set of all violated dependencies is the intersection of:
The set of all pairs (a, b) where a sends data to b
The set of all pairs of (a, b) where a comes before b in the new 
schedule:

{ (S[i], S[i + 1]) | 1 <= i <= 3 &&  5 – i >= 5 – (i + 1) }

{ (S[i], S[i + 1]) | 1 <= i <= 3 &&  Sched(i) >= Sched(i + 1) }



And then check if it is empty

{ (S[i], S[i + 1]) | 1 <= i <= 3 &&  Sched(i) >= Sched(i + 1)}

{ (S[i], S[i + 1]) | 1 <= i <= 3 &&  5 – i >= 5 – (i + 1) }



This emptiness check can be done with 
integer linear programming
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{ (S[i], S[i + 1]) | 1 <= i <= 3 &&  5 – i >= 5 – (i + 1) } is empty

if  and only if the system of linear inequalities:

1 <= i <= 3
5 – i >= 5 – (i + 1)

has no solution



This emptiness check can be done with 
integer linear programming
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{ (S[i], S[i + 1]) | 1 <= i <= 3 &&  5 – i >= 5 – (i + 1) } is empty

if  and only if the system of linear inequalities:

1 <= 1 <= 3
5 – 1 >= 5 – (1 + 1)

has no solution



This emptiness check can be done with 
integer linear programming
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{ (S[i], S[i + 1]) | 1 <= i <= 3 &&  5 – i >= 5 – (i + 1) } is empty

if  and only if the system of linear inequalities:

1 <= 1 <= 3
4 >= 5 – 2

has no solution



This emptiness check can be done with 
integer linear programming
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{ (S[i], S[i + 1]) | 1 <= i <= 3 &&  5 – i >= 5 – (i + 1) } is empty

if  and only if the system of linear inequalities:

1 <= 1 <= 3
4 >= 3



Integer linear programming
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Solves linear integer equations and inequalities and optimizes 
linear objective functions

3*x + 4*y + 7 >= 0
-3*x – 3 <= 0
z + 2 + x = 0



This is an ILP problem
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find integers x, y, and z such that:

3*x + 4*y + 7 >= 0
-3*x – 3 <= 0
z + 2 + x = 0



This is NOT an ILP problem
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find integers x, y, and z such that:

3*x + 4*y + 7 + sin(x) >= 0
-3*x – 3 <= 0
z + 2 + x = 0



This is an ILP problem

27

find integers x, y, and z that minimize: x + y + z

subject to:
3*x + 4*y + 7 >= 0
-3*x – 3 <= 0
z + 2 + x = 0



This is NOT an ILP problem
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find integers x, y, and z that minimize: x + y + z

subject to:
3*x*y + 4*y + 7 >= 0
-3*x – 3 <= 0
z + 2 + x = 0



This is NOT an ILP problem
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find integers x, y, and z that minimize: y + z

subject to:
x + 4*y + 7 >= 0
-3*x – 3 <= 0
z + 2 + x = 0

forall x >= 0. x + y <= 1



This is an ILP problem
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find integers x, y, and z that minimize: y + z

subject to:
x + 4*y + 7 >= 0
-3*x – 3 <= 0
z + 2 + x = 0

x + y <= 1



Integer linear programming (ILP)
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NP-complete (so it is very hard in theory)

Often tractable in practice for problems with hundreds of 
variables



This includes more than you might think

• You can express propositional logic, division and remainder (by a 
constant), min, max, absolute value, comparisons, and many other 
things

32



What about multiple dimensions?

for i in [1, 4]:
for j in [1, 3]:

S: A[i][j] = A[i – 1][j + 1]
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i

j



We need schedules with multiple dimensions

for i in [1, 4]:
for j in [1, 3]:

S: A[i][j] = A[i – 1][j + 1]

S[i, j] -> [i, j]
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But how are these schedules ordered?

for i in [1, 4]:
for j in [1, 3]:

S: A[i][j] = A[i – 1][j + 1]

[i, j] > [i + 3 j - 1] ???
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Lexicographically

for i in [1, 4]:
for j in [1, 3]:

S: A[i][j] = A[i – 1][j + 1]

[i, j] >> [i + 3 j - 1]
<->
(i > i + 3) v ((i = i + 3) ^ (j > j – 1))
<->
False
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Lexicographic order is like the time on a clock

• [1, 0] >> [0, 9] for the same reason that 1 minute and zero seconds is 
a larger amount of time than 0 minutes and 9 seconds

• [a, b] >> [c, d] if and only if: a > c or (a = c and b > d)

• Requires more calls to an ILP solver to check emptiness
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Checking if loop interchange is possible

for i in [1, 4]:
for j in [1, 3]:

S: A[i][j] = A[i – 1][j + 1]

S[i, j] -> [i, j]
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for j in [1, 3]:
for i in [1, 4]:

S: A[i][j] = A[i – 1][j + 1]

S[i, j] -> [j, i]



Checking if loop interchange is possible

for i in [1, 4]:
for j in [1, 3]:

S: A[i][j] = A[i – 1][j + 1]

S[i, j] -> [i, j]
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for j in [1, 3]:
for i in [1, 4]:

S: A[i][j] = A[i – 1][j + 1]

S[i, j] -> [j, i]

[i’, j’] << [j, i] &&
i' = 1 + i && j' = -1 + j
1 <= i <= 4 &&
1 <= j <= 3



Checking if loop interchange is possible

for i in [1, 4]:
for j in [1, 3]:

S: A[i][j] = A[i – 1][j + 1]

S[i, j] -> [i, j]
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for j in [1, 3]:
for i in [1, 4]:

S: A[i][j] = A[i – 1][j + 1]

S[i, j] -> [j, i]

[i’, j’] << [j, i] &&
i' = 1 + i && j' = -1 + j
1 <= i <= 4 &&
1 <= j <= 3
This is SAT, so the transformation is illegal



Ok, so we can check if a 
program transformation is 

legal…
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But what if we want to find a 
program transformation from 

scratch?
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Two ways to use the polyhedral model

• Analysis: Check legality of a transform: extract initial schedule, and 
data dependencies, construct the final schedule you want, and then 
check if the final schedule breaks any dependencies

• Scheduling: Extract initial schedule, and data dependencies. Set up an 
objective function that captures what you want, and constraints that 
guarantee that all dependencies are satisfied. Then solve the resulting 
ILP
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Optimize this program for locality

for i in [0, 5]:
P: A[i] = input[i] + 1

for j in [0, 5]:
C: B[j] = A[j] * 2
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The optimization problem

optimize: some function that models how much locality there is in the 
new schedules

subject to:

a bunch of constraints on the new schedules that guarantee that the 
dependencies in the original program are respected
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The new schedules will be affine functions of 
the original loop index variables…

SP(i) = sp*i + dp

SC(j) = sc*j + dc
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for i in [0, 5]:
P: A[i] = input[1] + 1

for j in [0, 5]:
C: B[j] = A[j] * 2



Our optimization problem needs to pick 
values for the schedule parameters

SP(i) = sp*i + dp

SC(j) = sc*j + dc
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for i in [0, 5]:
P: A[i] = input[1] + 1

for j in [0, 5]:
C: B[j] = A[j] * 2



The optimization problem

optimize: some function that captures the locality of the schedules

subject to:

constraints on sp, dp, sc, dc that guarantee that the dependencies in 
the original program are respected
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The optimization problem

optimize: some function that captures the locality of the schedules

subject to:

forall i, j such that P(i) sends data to C(j). SP(i) <= SC(j)
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The optimization problem

optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. SP(i) <= SC(j)
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The optimization problem

optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. sp*i + dp <= sc*j + dc
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But this is totally intractable!

optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. sp*i + dp <= sc*j + dc
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We have non-linear constraints…

optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. sp*i + dp <= sc*j + dc
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And they are universally quantified…

optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. sp*i + dp <= sc*j + dc
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We can resolve both of these problems with a 
theorem called the affine form of Farkas lemma
forall x in { x | Ax + b >= 0 } . sTx + d >= 0
<->
exists p0, p >= 0. forall x. sTx + d = pT(Ax + b) + p0
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How the @&#!& does that help?!

forall x in { x | Ax + b >= 0 } . sTx + d >= 0
<->
exists p0, p >= 0. forall x. sTx + d = pT(Ax + b) + p0
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Another way to say this…

forall x in { x | Ax + b >= 0 } . sTx + d >= 0
<->
exists p0, p >= 0. forall x. sTx + d = pT(Ax + b) + p0

An affine form is non-negative over a polyhedron if and only if it can be 
written as a non-negative combination of the constraints that form the 
polyhedron
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Lets look at a smaller example:

forall x >= 0 . a*x >= 0



A small example

forall x >= 0 . a*x >= 0
<-> farkas lemma
exists p0, p1 >= 0 . forall x . a * x = p1 * x + p0



A small example

forall x >= 0 . a*x >= 0
<-> farkas lemma
exists p0, p1 >= 0 . forall x . a * x = p1 * x + p0
<-> isolate the universally quantified “x”
exists p0, p1 >= 0 . forall x . (a – p1) * x - p0 = 0



A small example

forall x >= 0 . a*x >= 0
<-> farkas lemma
exists p0, p1 >= 0 . forall x . a * x = p1 * x + p0
<-> isolate the universally quantified “x”
exists p0, p1 >= 0 . forall x . (a – p1) * x - p0 = 0
<-> simplify using standard linear algebra
exists p0, p1 >= 0 . (a – p1) = 0 && p0 = 0
<->
SAT(p0 >= 0 && p1 >= 0 && a = p1 && p0 = 0)



Back to our more realistic example…

optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. sp*i + dp <= sc*j + dc

62



Lets re-organize to isolate the quantified 
variables…
optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. sp*i + dp – sc*j – dc <= 0
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optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. -sp*i - dp + sc*j + dc >= 0
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Lets re-organize to isolate the quantified 
variables…



optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. -sp*i + sc*j + (dc –dp) >= 0
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The inequality is actually an affine form (a dot product 
of 2 vectors plus a constant) with respect to i and j



optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. -sp*i + sc*j + (dc –dp) >= 0
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And the domain of the quantifier is a 
polyhedron



optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i && i <= 5 && 0 <= j && j <= 5 && i <= j & j <= i.
-sp*i + sc*j + (dc –dp) >= 0
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And the domain of the quantifier is a 
polyhedron



optimize: some function that captures the locality of the schedules

subject to:

forall i >= 0  && -i >= -5 && j >= 0 && -j >= -5 && j – i >= 0 & i - j >= 0.
-sp*i + sc*j + (dc –dp) >= 0
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Lets normalize the domain constraints



This Farkas lemma trick helps with the 
objective function too!
optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. sp*i + dp <= sc*j + dc
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Create a variable that represents a bound on 
the time between producers and consumers 
minimize: w

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j.
sp*i + dp <= sc*j + dc

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j.
sp*i + dp – sc*j – dc <= w
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In general we might want…

minimize: wp + wn

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j.
sp*i + dp <= sc*j + dc

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j.
sp*i + dp – sc*j – dc <= w

w = wp – wn
wp, wn >= 0
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We can use the same strategy to push 
dependencies further apart to create parallelism
maximize: e

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j.
sp*i + dp <= sc*j + dc

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j.
e <= sc*j + dc - sp*i - dp

0 <= e <= UPPER_BOUND_ON_DISTANCE
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Multiple dimensions can be handled 
iteratively
Dependence_Graph = Initial_DD(prog)

Schedule_Vectors = []

while (!empty(Dependence_Graph))

Next_Schedule_Levels = Solve_ILP(DependenceGraph, objective)

Schedule_vectors.append(Next_Schedule_Levels)

Dependence_Graph = Remove_Carried_Deps(Next_Schedule_Levels)
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So how do we turn 
polyhedral schedules back 

into for loops?
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Two rectangular iteration domains…

i

j

Output polyhedra

A = { [i, j] | 1 <= i <= 4 and 1 <= j <= 2 }

B = { [i, j] | 3 <= i <= 6 and 3 <= j <= 4 }
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How do we create loops for these points in 
lexicographic order?

i

j

Output polyhedra

A = { [i, j] | 1 <= i <= 4 and 1 <= j <= 2 }

B = { [i, j] | 3 <= i <= 6 and 3 <= j <= 4 }
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Easy: Compute a hull of all statements, iterate over 
it with a perfect loop nest, and use the polyhedra 
as guards

i

j

Output polyhedra

A = { [i, j] | 1 <= i <= 4 and 1 <= j <= 2 }

B = { [i, j] | 3 <= i <= 6 and 3 <= j <= 4 }
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Easy: Compute a hull of all statements, iterate over 
it with a perfect loop nest, and use the polyhedra 
as guards

i

j

Scanning loops

for (int i = 1; i <= 6; i++)
for (int j = 1; j <= 4; j++) {
if (1 <= i && i <= 4 && 1 <= j && j <= 2)
A(i, j)

if (3 <= i && i <= 6 && 3 <= j && j <= 4)
B(i, j)

}
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Easy but inefficient: Compute a hull of all 
statements, iterate over it with a perfect loop 
nest, and use the polyhedra as guards

i

j

Scanning loops

for (int i = 1; i <= 6; i++)
for (int j = 1; j <= 4; j++) {
if (1 <= i && i <= 4 && 1 <= j && j <= 2)
A(i, j)

if (3 <= i && i <= 6 && 3 <= j && j <= 4)
B(i, j)

}

x x

x x

x x

x x
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Harder but more efficient: Use projection to 
isolate regions with the same statements

i

j

for (int i = 1; i <= 2; i++)
for (int j = 1; j <= 2; j++)
A(i, j)

for (int i = 3; i <= 4; i++)
for (int j = 1; j <= 2; j++) {
if (1 <= j && j <= 2)
A(i, j)

if (3 <= j && j <= 4)
B(i, j)

}
for (int i = 5; i <= 6; i++)
for (int j = 3; j <= 4; j++)
B(i, j) 80



There are many other code generation 
tricks…
• But: Polyhedral code generation still doesn’t work that well
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It’s a powerful tool, but only in a narrow 
domain…
• Modest size programs
• With (quasi)affine address expressions and bounds
• Code generation is tricky
• Counting is even harder (Barvinok)
• Ravi Mullapudi: “Polyhedral analysis is great for analysis”
• Standard tool for polyhedral analysis: ISL by Sven Verdooleage

(generic) Polly (LLVM)
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