
The polyhedral model
Dillon Huff

1

Can we reverse this loop?

for i in [1, 4]:
S: A[i] = A[i - 1]

2

Do these loops have the same behavior?

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

3

Lets look at the program traces

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]

4

The sets of statements are the same in each
one

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]

5

Only the order changes

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]

6

So when we change the order, does anything
go wrong?

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]

7

So when we change the order, does the
program’s behavior change?

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]

8

So when we change the order, are any
dependencies violated?

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]

9

A[0]A[1]
A[1]A[2]
A[2]A[3]
A[3]A[4]

readwrite

Yes

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]

10

For example

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]

11

Now lets formalize this
analysis a little more

12

We are given an original program

for i in [1, 4]:
S: A[i] = A[i - 1]

13

And a candidate target program

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

14

Both of them define execution traces that
contain the same set of statements

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]

15

{ S[i] | 1 <= i <= 4 } { S[i] | 1 <= i <= 4 }

The control logic defines the order in which
statements are executed

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]

16

{ S[i] | 1 <= i <= 4 } { S[i] | 1 <= i <= 4 }

{ S[i] -> i } { S[i] -> 5 - i }

The schedule and memory access pattern of the
original program define a set of data
dependencies

for i in [1, 4]:
S: A[i] = A[i - 1]

for i in [4, 1]:
S: A[i] = A[i - 1]

S[1]
S[2]
S[3]
S[4]

S[4]
S[3]
S[2]
S[1]

17

{ S[i] | 1 <= i <= 4 } { S[i] | 1 <= i <= 4 }

{ S[i] -> i } { S[i] -> 5 - i }

{ S[i] -> S[i + 1] | 1 <= i <= 3 }

Construct the set of all violated dependencies
in the new schedule

The set of all violated dependencies is the intersection of:
The set of all pairs (a, b) where a sends data to b
The set of all pairs of (a, b) where a comes before b in the new
schedule:

{ (S[i], S[i + 1]) | 1 <= i <= 3 && 5 – i >= 5 – (i + 1) }

{ (S[i], S[i + 1]) | 1 <= i <= 3 && Sched(i) >= Sched(i + 1) }

And then check if it is empty

{ (S[i], S[i + 1]) | 1 <= i <= 3 && Sched(i) >= Sched(i + 1)}

{ (S[i], S[i + 1]) | 1 <= i <= 3 && 5 – i >= 5 – (i + 1) }

This emptiness check can be done with
integer linear programming

20

{ (S[i], S[i + 1]) | 1 <= i <= 3 && 5 – i >= 5 – (i + 1) } is empty

if and only if the system of linear inequalities:

1 <= i <= 3
5 – i >= 5 – (i + 1)

has no solution

This emptiness check can be done with
integer linear programming

21

{ (S[i], S[i + 1]) | 1 <= i <= 3 && 5 – i >= 5 – (i + 1) } is empty

if and only if the system of linear inequalities:

1 <= 1 <= 3
5 – 1 >= 5 – (1 + 1)

has no solution

This emptiness check can be done with
integer linear programming

22

{ (S[i], S[i + 1]) | 1 <= i <= 3 && 5 – i >= 5 – (i + 1) } is empty

if and only if the system of linear inequalities:

1 <= 1 <= 3
4 >= 5 – 2

has no solution

This emptiness check can be done with
integer linear programming

23

{ (S[i], S[i + 1]) | 1 <= i <= 3 && 5 – i >= 5 – (i + 1) } is empty

if and only if the system of linear inequalities:

1 <= 1 <= 3
4 >= 3

Integer linear programming

24

Solves linear integer equations and inequalities and optimizes
linear objective functions

3*x + 4*y + 7 >= 0
-3*x – 3 <= 0
z + 2 + x = 0

This is an ILP problem

25

find integers x, y, and z such that:

3*x + 4*y + 7 >= 0
-3*x – 3 <= 0
z + 2 + x = 0

This is NOT an ILP problem

26

find integers x, y, and z such that:

3*x + 4*y + 7 + sin(x) >= 0
-3*x – 3 <= 0
z + 2 + x = 0

This is an ILP problem

27

find integers x, y, and z that minimize: x + y + z

subject to:
3*x + 4*y + 7 >= 0
-3*x – 3 <= 0
z + 2 + x = 0

This is NOT an ILP problem

28

find integers x, y, and z that minimize: x + y + z

subject to:
3*x*y + 4*y + 7 >= 0
-3*x – 3 <= 0
z + 2 + x = 0

This is NOT an ILP problem

29

find integers x, y, and z that minimize: y + z

subject to:
x + 4*y + 7 >= 0
-3*x – 3 <= 0
z + 2 + x = 0

forall x >= 0. x + y <= 1

This is an ILP problem

30

find integers x, y, and z that minimize: y + z

subject to:
x + 4*y + 7 >= 0
-3*x – 3 <= 0
z + 2 + x = 0

x + y <= 1

Integer linear programming (ILP)

31

NP-complete (so it is very hard in theory)

Often tractable in practice for problems with hundreds of
variables

This includes more than you might think

• You can express propositional logic, division and remainder (by a
constant), min, max, absolute value, comparisons, and many other
things

32

What about multiple dimensions?

for i in [1, 4]:
for j in [1, 3]:

S: A[i][j] = A[i – 1][j + 1]

33

i

j

We need schedules with multiple dimensions

for i in [1, 4]:
for j in [1, 3]:

S: A[i][j] = A[i – 1][j + 1]

S[i, j] -> [i, j]

34

But how are these schedules ordered?

for i in [1, 4]:
for j in [1, 3]:

S: A[i][j] = A[i – 1][j + 1]

[i, j] > [i + 3 j - 1] ???

35

Lexicographically

for i in [1, 4]:
for j in [1, 3]:

S: A[i][j] = A[i – 1][j + 1]

[i, j] >> [i + 3 j - 1]
<->
(i > i + 3) v ((i = i + 3) ^ (j > j – 1))
<->
False

36

Lexicographic order is like the time on a clock

• [1, 0] >> [0, 9] for the same reason that 1 minute and zero seconds is
a larger amount of time than 0 minutes and 9 seconds

• [a, b] >> [c, d] if and only if: a > c or (a = c and b > d)

• Requires more calls to an ILP solver to check emptiness

37

Checking if loop interchange is possible

for i in [1, 4]:
for j in [1, 3]:

S: A[i][j] = A[i – 1][j + 1]

S[i, j] -> [i, j]

38

for j in [1, 3]:
for i in [1, 4]:

S: A[i][j] = A[i – 1][j + 1]

S[i, j] -> [j, i]

Checking if loop interchange is possible

for i in [1, 4]:
for j in [1, 3]:

S: A[i][j] = A[i – 1][j + 1]

S[i, j] -> [i, j]

39

for j in [1, 3]:
for i in [1, 4]:

S: A[i][j] = A[i – 1][j + 1]

S[i, j] -> [j, i]

[i’, j’] << [j, i] &&
i' = 1 + i && j' = -1 + j
1 <= i <= 4 &&
1 <= j <= 3

Checking if loop interchange is possible

for i in [1, 4]:
for j in [1, 3]:

S: A[i][j] = A[i – 1][j + 1]

S[i, j] -> [i, j]

40

for j in [1, 3]:
for i in [1, 4]:

S: A[i][j] = A[i – 1][j + 1]

S[i, j] -> [j, i]

[i’, j’] << [j, i] &&
i' = 1 + i && j' = -1 + j
1 <= i <= 4 &&
1 <= j <= 3
This is SAT, so the transformation is illegal

Ok, so we can check if a
program transformation is

legal…

41

But what if we want to find a
program transformation from

scratch?

42

Two ways to use the polyhedral model

• Analysis: Check legality of a transform: extract initial schedule, and
data dependencies, construct the final schedule you want, and then
check if the final schedule breaks any dependencies

• Scheduling: Extract initial schedule, and data dependencies. Set up an
objective function that captures what you want, and constraints that
guarantee that all dependencies are satisfied. Then solve the resulting
ILP

43

Optimize this program for locality

for i in [0, 5]:
P: A[i] = input[i] + 1

for j in [0, 5]:
C: B[j] = A[j] * 2

44

The optimization problem

optimize: some function that models how much locality there is in the
new schedules

subject to:

a bunch of constraints on the new schedules that guarantee that the
dependencies in the original program are respected

45

The new schedules will be affine functions of
the original loop index variables…

SP(i) = sp*i + dp

SC(j) = sc*j + dc

46

for i in [0, 5]:
P: A[i] = input[1] + 1

for j in [0, 5]:
C: B[j] = A[j] * 2

Our optimization problem needs to pick
values for the schedule parameters

SP(i) = sp*i + dp

SC(j) = sc*j + dc

47

for i in [0, 5]:
P: A[i] = input[1] + 1

for j in [0, 5]:
C: B[j] = A[j] * 2

The optimization problem

optimize: some function that captures the locality of the schedules

subject to:

constraints on sp, dp, sc, dc that guarantee that the dependencies in
the original program are respected

48

The optimization problem

optimize: some function that captures the locality of the schedules

subject to:

forall i, j such that P(i) sends data to C(j). SP(i) <= SC(j)

49

The optimization problem

optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. SP(i) <= SC(j)

50

The optimization problem

optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. sp*i + dp <= sc*j + dc

51

But this is totally intractable!

optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. sp*i + dp <= sc*j + dc

52

We have non-linear constraints…

optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. sp*i + dp <= sc*j + dc

53

And they are universally quantified…

optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. sp*i + dp <= sc*j + dc

54

We can resolve both of these problems with a
theorem called the affine form of Farkas lemma
forall x in { x | Ax + b >= 0 } . sTx + d >= 0
<->
exists p0, p >= 0. forall x. sTx + d = pT(Ax + b) + p0

55

How the @&#!& does that help?!

forall x in { x | Ax + b >= 0 } . sTx + d >= 0
<->
exists p0, p >= 0. forall x. sTx + d = pT(Ax + b) + p0

56

Another way to say this…

forall x in { x | Ax + b >= 0 } . sTx + d >= 0
<->
exists p0, p >= 0. forall x. sTx + d = pT(Ax + b) + p0

An affine form is non-negative over a polyhedron if and only if it can be
written as a non-negative combination of the constraints that form the
polyhedron

57

Lets look at a smaller example:

forall x >= 0 . a*x >= 0

A small example

forall x >= 0 . a*x >= 0
<-> farkas lemma
exists p0, p1 >= 0 . forall x . a * x = p1 * x + p0

A small example

forall x >= 0 . a*x >= 0
<-> farkas lemma
exists p0, p1 >= 0 . forall x . a * x = p1 * x + p0
<-> isolate the universally quantified “x”
exists p0, p1 >= 0 . forall x . (a – p1) * x - p0 = 0

A small example

forall x >= 0 . a*x >= 0
<-> farkas lemma
exists p0, p1 >= 0 . forall x . a * x = p1 * x + p0
<-> isolate the universally quantified “x”
exists p0, p1 >= 0 . forall x . (a – p1) * x - p0 = 0
<-> simplify using standard linear algebra
exists p0, p1 >= 0 . (a – p1) = 0 && p0 = 0
<->
SAT(p0 >= 0 && p1 >= 0 && a = p1 && p0 = 0)

Back to our more realistic example…

optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. sp*i + dp <= sc*j + dc

62

Lets re-organize to isolate the quantified
variables…
optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. sp*i + dp – sc*j – dc <= 0

63

optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. -sp*i - dp + sc*j + dc >= 0

64

Lets re-organize to isolate the quantified
variables…

optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. -sp*i + sc*j + (dc –dp) >= 0

65

The inequality is actually an affine form (a dot product
of 2 vectors plus a constant) with respect to i and j

optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. -sp*i + sc*j + (dc –dp) >= 0

66

And the domain of the quantifier is a
polyhedron

optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i && i <= 5 && 0 <= j && j <= 5 && i <= j & j <= i.
-sp*i + sc*j + (dc –dp) >= 0

67

And the domain of the quantifier is a
polyhedron

optimize: some function that captures the locality of the schedules

subject to:

forall i >= 0 && -i >= -5 && j >= 0 && -j >= -5 && j – i >= 0 & i - j >= 0.
-sp*i + sc*j + (dc –dp) >= 0

68

Lets normalize the domain constraints

This Farkas lemma trick helps with the
objective function too!
optimize: some function that captures the locality of the schedules

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j. sp*i + dp <= sc*j + dc

69

Create a variable that represents a bound on
the time between producers and consumers
minimize: w

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j.
sp*i + dp <= sc*j + dc

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j.
sp*i + dp – sc*j – dc <= w

70

In general we might want…

minimize: wp + wn

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j.
sp*i + dp <= sc*j + dc

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j.
sp*i + dp – sc*j – dc <= w

w = wp – wn
wp, wn >= 0

71

We can use the same strategy to push
dependencies further apart to create parallelism
maximize: e

subject to:

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j.
sp*i + dp <= sc*j + dc

forall 0 <= i <= 5 && 0 <= j <= 5 && i = j.
e <= sc*j + dc - sp*i - dp

0 <= e <= UPPER_BOUND_ON_DISTANCE

72

Multiple dimensions can be handled
iteratively
Dependence_Graph = Initial_DD(prog)

Schedule_Vectors = []

while (!empty(Dependence_Graph))

Next_Schedule_Levels = Solve_ILP(DependenceGraph, objective)

Schedule_vectors.append(Next_Schedule_Levels)

Dependence_Graph = Remove_Carried_Deps(Next_Schedule_Levels)

73

So how do we turn
polyhedral schedules back

into for loops?

74

Two rectangular iteration domains…

i

j

Output polyhedra

A = { [i, j] | 1 <= i <= 4 and 1 <= j <= 2 }

B = { [i, j] | 3 <= i <= 6 and 3 <= j <= 4 }

75

How do we create loops for these points in
lexicographic order?

i

j

Output polyhedra

A = { [i, j] | 1 <= i <= 4 and 1 <= j <= 2 }

B = { [i, j] | 3 <= i <= 6 and 3 <= j <= 4 }

76

Easy: Compute a hull of all statements, iterate over
it with a perfect loop nest, and use the polyhedra
as guards

i

j

Output polyhedra

A = { [i, j] | 1 <= i <= 4 and 1 <= j <= 2 }

B = { [i, j] | 3 <= i <= 6 and 3 <= j <= 4 }

77

Easy: Compute a hull of all statements, iterate over
it with a perfect loop nest, and use the polyhedra
as guards

i

j

Scanning loops

for (int i = 1; i <= 6; i++)
for (int j = 1; j <= 4; j++) {
if (1 <= i && i <= 4 && 1 <= j && j <= 2)
A(i, j)

if (3 <= i && i <= 6 && 3 <= j && j <= 4)
B(i, j)

}

78

Easy but inefficient: Compute a hull of all
statements, iterate over it with a perfect loop
nest, and use the polyhedra as guards

i

j

Scanning loops

for (int i = 1; i <= 6; i++)
for (int j = 1; j <= 4; j++) {
if (1 <= i && i <= 4 && 1 <= j && j <= 2)
A(i, j)

if (3 <= i && i <= 6 && 3 <= j && j <= 4)
B(i, j)

}

x x

x x

x x

x x

79

Harder but more efficient: Use projection to
isolate regions with the same statements

i

j

for (int i = 1; i <= 2; i++)
for (int j = 1; j <= 2; j++)
A(i, j)

for (int i = 3; i <= 4; i++)
for (int j = 1; j <= 2; j++) {
if (1 <= j && j <= 2)
A(i, j)

if (3 <= j && j <= 4)
B(i, j)

}
for (int i = 5; i <= 6; i++)
for (int j = 3; j <= 4; j++)
B(i, j) 80

There are many other code generation
tricks…
• But: Polyhedral code generation still doesn’t work that well

81

It’s a powerful tool, but only in a narrow
domain…
• Modest size programs
• With (quasi)affine address expressions and bounds
• Code generation is tricky
• Counting is even harder (Barvinok)
• Ravi Mullapudi: “Polyhedral analysis is great for analysis”
• Standard tool for polyhedral analysis: ISL by Sven Verdooleage

(generic) Polly (LLVM)

82

