Different Ways
fo
Build a DSL

Pat Hanrahan

Approaches

External DSL

An external DSL is implemented as a
standalone language.

Embedded (Internal) DSL

An internal DSL is embedded within a
another language. Ideally, the host language
has features that make it easy to build DSLs.

External DSLs

Language
Implementation

Language —p S:lll::l:tllc —» Results

Parse Evaluate
(yacc and lex)

calc.py

lexical analysis
syntactic analysis
interpretation

Advantages

m Flexibility (syntax, semantics)

m Simple languages are simple (little languages)
Disadvantages

m Yet-Another-Programming-Language

m Syntactical cacophony

m The slippery slope of generality

m Interpretation is slow

m Hard to interoperate with other languages

® No tool chain: IDE, debugger, profiler, ...

Embedded DSLs

// OpenGL

glMatrixMode (GL_PROJECTION);
glPerspective(45.0);

for(;5) {
glBegin(TRIANGLES);
glVertex(..);

glVertex(..);

glEna();
}

glSwapBuffers();

// OpenGL ‘“Grammar”

<Scene> = <BeginFrame> <Camera> <World>
<EndFrame>

<Camera> = glMatrixMode(GL_PROJECTION) <View>
<View> = glPerspective | glOrtho

<World> = <Objects>*

<Object> = <Transforms>* <Geometry>
<Transforms> = glTranslatef | glRotatef | ..
<Geometry> = glBegin <Vertices> glEnd
<Vertices> = [glColor] [glNormal] glVertex

Fluent Interface

“Composable API Calls”

// https://jquery.com/

<1i>One</11i>
<1li>Two</1i>
<1li>Three</1i>

// turn first element green
$("1i:first").css("color", "green");

https://www.d3-graph-gallery.com/graph/
density basic.html

http://d3js.org/

// Lyng in C#

int count =
(from character in Characters
where character.Episodes > 120
select character).Count();

// Simpler syntax

Advantages
m No need to learn another language
m Familiar syntax

m Still have access to general-purpose
features

m Can interoperate with other libraries and
classes

m Complete tool chain

Disadvantages
m Syntax is rigid and verbose
m Interpreters are still slow

m Hard to debug DSLs using current
tool chains

m Hard to limit features in the
language

m Still hard to develop

DSL Building Features

Powerful types: Algebraic data types,
type classes or classes with inheritance

Polymorphism (multiple interpretations)
Higher-order functions and lambdas

Flexible syntax

Shallow Embedding

A shallow embedding is when the
expressions are interpreted in the
semantics of the base language

calc1.py

m Direct interpretation of arithmetic

Deep Embedding

A deep embedding first builds an
abstract syntax tree (AST). The abstract
syntax tree is typically an algebraic data

type. The AST is then evaluated with an
interpreter.

calc2.py

m AST represented as a tuple

Operator Overloading

https://docs.python.org/2/reference/datamodel.hitml

“”QOverloading”

Not all “operations” can be intercepted
m Arithmetic operators
u lteration operators
® Function definition?
m Type/class definition?
m Equality?
m Assignment?
“Monkey patching” like this can be dangerous

Type-directed embedding

Efficient Interpreters

Type safety

m Base language parses

m AST is guaranteed to be well-formed
Remove overhead of interpretation

m Typed tagless final interpreters ...

m Multi-Stage programming

m Partial evaluation

Language

Implementation
Semantic Machine
Parse Analysis Optimization

Transformation Code Generation

Mini-APL Assignment

Implement a simple array processing
language in C++

Simple recursive descent parser that
builds an AST (that we provide)

"Lower" the AST to LLVM. Generate
efficient code!

Assignment released today, due ...

