
Different Ways
to

Build a DSL

Pat Hanrahan

Approaches
External DSL

An external DSL is implemented as a
standalone language.

Embedded (Internal) DSL

An internal DSL is embedded within a
another language. Ideally, the host language
has features that make it easy to build DSLs.

External DSLs

Language
Implementation

Parse
(yacc and lex)

Evaluate

Language Semantic
Model Results

calc.py

lexical analysis
syntactic analysis

interpretation

Advantages

■ Flexibility (syntax, semantics)

■ Simple languages are simple (little languages)

Disadvantages

■Yet-Another-Programming-Language

■ Syntactical cacophony

■ The slippery slope of generality

■ Interpretation is slow

■Hard to interoperate with other languages

■No tool chain: IDE, debugger, profiler, …

Embedded DSLs

//	OpenGL	

glMatrixMode(GL_PROJECTION);	
glPerspective(45.0);	

for(;;)	{	
				glBegin(TRIANGLES);	
								glVertex(…);	
								glVertex(…);	
								…	
				glEnd();	
}	

glSwapBuffers();	

//	OpenGL	“Grammar”	

<Scene>	=	<BeginFrame>	<Camera>	<World>	
<EndFrame>	

<Camera>	=	glMatrixMode(GL_PROJECTION)	<View>	
<View>	=	glPerspective	|	glOrtho	

<World>	=	<Objects>*	
<Object>	=	<Transforms>*	<Geometry>	
<Transforms>	=	glTranslatef	|	glRotatef	|	…	
<Geometry>	=	glBegin	<Vertices>	glEnd	
<Vertices>	=	[glColor]	[glNormal]	glVertex	

Fluent Interface

“Composable API Calls”

//	https://jquery.com/		

	
		One	
		Two	
		Three	
	

//	turn	first	element	green	
$("li:first").css("color",	"green");	

http://d3js.org/

https://www.d3-graph-gallery.com/graph/
density_basic.html

//	Lynq	in	C#	

int	count	=		
			(from	character	in	Characters	
			where	character.Episodes	>	120	
			select	character).Count();	

//	Simpler	syntax

Advantages

■No need to learn another language

■ Familiar syntax

■ Still have access to general-purpose
features

■Can interoperate with other libraries and
classes

■Complete tool chain

Disadvantages

■ Syntax is rigid and verbose

■ Interpreters are still slow

■Hard to debug DSLs using current
tool chains

■Hard to limit features in the
language

■ Still hard to develop

DSL Building Features
Powerful types: Algebraic data types,
type classes or classes with inheritance

Polymorphism (multiple interpretations)

Higher-order functions and lambdas

Flexible syntax

Shallow Embedding
A shallow embedding is when the
expressions are interpreted in the
semantics of the base language

calc1.py

■Direct interpretation of arithmetic

Deep Embedding
A deep embedding first builds an
abstract syntax tree (AST). The abstract
syntax tree is typically an algebraic data
type. The AST is then evaluated with an
interpreter.

calc2.py

■AST represented as a tuple

Operator Overloading

https://docs.python.org/2/reference/datamodel.html

“Overloading”
Not all “operations” can be intercepted

■Arithmetic operators

■ Iteration operators

■ Function definition?

■ Type/class definition?

■ Equality?

■Assignment?

“Monkey patching” like this can be dangerous

Type-directed embedding

Efficient Interpreters
Type safety

■Base language parses

■AST is guaranteed to be well-formed

Remove overhead of interpretation

■ Typed tagless final interpreters …

■Multi-Stage programming

■Partial evaluation

Language
Implementation

Parse Analysis
Transformation

Semantic
Model IR Machine

Code

Optimization
Code Generation

AST

Mini-APL Assignment
Implement a simple array processing
language in C++

Simple recursive descent parser that
builds an AST (that we provide)

"Lower" the AST to LLVM. Generate
efficient code!

Assignment released today, due …

