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Approaches
External DSL 

An external DSL is implemented as a 
standalone language. 

Embedded (Internal) DSL 

An internal DSL is embedded within a 
another language. Ideally, the host language 
has features that make it easy to build DSLs.



External DSLs
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Advantages 

■ Flexibility (syntax, semantics) 

■ Simple languages are simple (little languages) 

Disadvantages 

■Yet-Another-Programming-Language 

■ Syntactical cacophony 

■ The slippery slope of generality 

■ Interpretation is slow 

■Hard to interoperate with other languages 

■No tool chain: IDE, debugger, profiler, …



Embedded DSLs



//	OpenGL	

glMatrixMode(GL_PROJECTION);	
glPerspective(45.0);	

for(	;;	)	{	
				glBegin(TRIANGLES);	
								glVertex(…);	
								glVertex(…);	
								…	
				glEnd();	
}	

glSwapBuffers();	



//	OpenGL	“Grammar”	

<Scene>	=	<BeginFrame>	<Camera>	<World>	
<EndFrame>	

<Camera>	=	glMatrixMode(GL_PROJECTION)	<View>	
<View>	=	glPerspective	|	glOrtho	

<World>	=	<Objects>*	
<Object>	=	<Transforms>*	<Geometry>	
<Transforms>	=	glTranslatef	|	glRotatef	|	…	
<Geometry>	=	glBegin	<Vertices>	glEnd	
<Vertices>	=	[glColor]	[glNormal]	glVertex	



Fluent Interface 

“Composable API Calls”



//	https://jquery.com/		

<ul>	
		<li>One</li>	
		<li>Two</li>	
		<li>Three</li>	
</ul>	

//	turn	first	element	green	
$("li:first").css("color",	"green");	



http://d3js.org/

https://www.d3-graph-gallery.com/graph/
density_basic.html



//	Lynq	in	C#	

int	count	=		
			(from	character	in	Characters	
			where	character.Episodes	>	120	
			select	character).Count();	

//	Simpler	syntax



Advantages 

■No need to learn another language 

■ Familiar syntax  

■ Still have access to general-purpose 
features 

■Can interoperate with other libraries and 
classes 

■Complete tool chain 



Disadvantages 

■ Syntax is rigid and verbose 

■ Interpreters are still slow 

■Hard to debug DSLs using current 
tool chains 

■Hard to limit features in the 
language 

■ Still hard to develop



DSL Building Features
Powerful types: Algebraic data types, 
type classes or classes with inheritance 

Polymorphism (multiple interpretations) 

Higher-order functions and lambdas 

Flexible syntax



Shallow Embedding
A shallow embedding is when the 
expressions are interpreted in the 
semantics of the base language 

calc1.py 

■Direct interpretation of arithmetic



Deep Embedding
A deep embedding first builds an 
abstract syntax tree (AST). The abstract 
syntax tree is typically an algebraic data 
type. The AST is then evaluated with an 
interpreter. 

calc2.py 

■AST represented as a tuple



Operator Overloading 

https://docs.python.org/2/reference/datamodel.html



“Overloading”
Not all “operations” can be intercepted 

■Arithmetic operators 

■ Iteration operators 

■ Function definition?  

■ Type/class definition? 

■ Equality? 

■Assignment? 

“Monkey patching” like this can be dangerous 

Type-directed embedding



Efficient Interpreters
Type safety 

■Base language parses 

■AST is guaranteed to be well-formed 

Remove overhead of interpretation 

■ Typed tagless final interpreters … 

■Multi-Stage programming 

■Partial evaluation
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Mini-APL Assignment
Implement a simple array processing 
language in C++ 

Simple recursive descent parser that 
builds an AST (that we provide) 

"Lower" the AST to LLVM. Generate 
efficient code! 

Assignment released today, due …


