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Terminology: Regular and Irregular

Fully Connected System Regular System Irregular System
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Terminology: Dense and Sparse

Dense loop iteration space

for (int i = 0; i < m; i++) { 
  for (int j = 0; j < n; j++) { 
    y[i] += A[i*n+j] * x[j]; 
  } 
}

y = Ax

Sparse loop iteration space

  for (int i = 0; i < m; i++) { 
   for (int pA = A2_pos[i]; pA < A_pos[i+1]; pA++) { 
      int j = A_crd[pA]; 
      y[i] += A[pA] * x[j]; 
    } 
  }

y = Ax
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Dense applications

Dense Matrix-Vector Multiplication Triagonal SolveStencils
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Timeline of some important developments in compilers 
and programming languages for dense compilers

Dense
Programming

Systems

Fortran
APL

MATLAB

LL
Vector Model

NESL SPIRAL
TCE

NumPy
Halide

TVM
TC

Dense Loop
Optimization

Loop-Invariant Code Motion Distributed-Memory
Loop SkewingLoop Unroll and Fusion Polaris

Operator Strength Reduction PolyLib
Loop Interchange SUIF PLUTO

Polyhedral Model Polyhedra Scanning PENCIL
Parametric Integer Programming Transformation Scripts

Automatic Loop Parallelization Omega Library
Dependence Testing Omega Test

Data�ow Analysis Unimodular Trans.

1950 1960 1970 1980 1990 2000 2010
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Traditional compiler loop transformations

for (int i=0; i<m; i++) 
  for (int j=0; j<n; j++) 
    A[i][j] = B[i][j] + C[i][j];

for (int j=0; j<n; j++) 
  for (int i=0; i<m; i++) 
    A[i][j] = B[i][j] + C[i][j];

Reorder (interchange)
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Traditional compiler loop transformations

for (int i=0; i<m; i++) 
  a[i] = b[i] + c[i]; 

for (int k=0; k<m; k+=4) 
  for (int i=k; i<k+4; i++) 
    a[i] = b[i] + c[i];

Split (Stripmine)
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Traditional compiler loop transformations

for (int k=0; k<m; k+=4) 
  for (int i=k; i<k+4; i++) 
    a[i] = b[i] + c[i];

for (int k=0; k<m; k+=4) 
  a[k:k+4] = b[k:k+4] + c[k:k+4];

Vectorize
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Traditional compiler loop transformations

for (int i=0; i<m; i++) 
  a[i] = b[i] + c[i]; 

for (int i=0; i<m; i++) 
  d[i] = -b[i];

for (int i=0; i<m; i++) 
  a[i] = b[i] + c[i]; 
  d[i] = -b[i]; 

Fusion
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Traditional compiler loop transformations

for (int i=0; i<m; i++) 
  for (int j=0; j<n; j++) 
    A[i*m+j] = -B[i*m+j];

for (int ij=0; ij<m*n; ij++) 
  A[ij] = -B[ij];

Collapse (flatten)
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Two models of loop optimization: source code rewrite and 
mathematical frameworks

for (int i=0; i<m; i++) { 
  a[i] = b[i] + c[i]; 
}

for (int k=0; k<m; k+=4) { 
  for (int i=k; i<k+4; i++) { 
    a[i] = b[i] + c[i]; 
}

Source Code

Rewrite

split(4)

split(4)

convert to

integer domain code generation

for (int i=0; i<m; i++) { 
  a[i] = b[i] + c[i]; 
}

for (int k=0; k<m; k+=4) { 
  for (int i=k; i<k+4; i++) { 
    a[i] = b[i] + c[i]; 
}

Mathematical

Frameworks

Mathematical loop optimization frameworks include the polyhedral model (Lecture 11)
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Optimizing dense codes require complex tradeoffs 
between parallelism, locality, and work efficiency

ACM Reference Format
Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S., Durand, F. 2012. Decoupling Algorithms 
from Schedules for Easy Optimization of Image Processing Pipelines. ACM Trans. Graph. 31 4, Article 32 
(July 2012), 12 pages. DOI = 10.1145/2185520.2185528 http://doi.acm.org/10.1145/2185520.2185528.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted 
without fee provided that copies are not made or distributed for profi t or direct commercial advantage 
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation. 
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with 
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any 
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be 
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1 
(212) 869-0481, or permissions@acm.org.
© 2012 ACM 0730-0301/2012/08-ART32 $15.00 DOI 10.1145/2185520.2185528 
http://doi.acm.org/10.1145/2185520.2185528

Decoupling Algorithms from Schedules
for Easy Optimization of Image Processing Pipelines

Jonathan Ragan-Kelley⇤ Andrew Adams⇤ Sylvain Paris† Marc Levoy‡ Saman Amarasinghe⇤ Frédo Durand⇤
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Abstract
Using existing programming tools, writing high-performance im-
age processing code requires sacrificing readability, portability, and
modularity. We argue that this is a consequence of conflating what
computations define the algorithm, with decisions about storage
and the order of computation. We refer to these latter two concerns
as the schedule, including choices of tiling, fusion, recomputation
vs. storage, vectorization, and parallelism.

We propose a representation for feed-forward imaging pipelines
that separates the algorithm from its schedule, enabling high-
performance without sacrificing code clarity. This decoupling sim-
plifies the algorithm specification: images and intermediate buffers
become functions over an infinite integer domain, with no explicit
storage or boundary conditions. Imaging pipelines are compo-
sitions of functions. Programmers separately specify scheduling
strategies for the various functions composing the algorithm, which
allows them to efficiently explore different optimizations without
changing the algorithmic code.

We demonstrate the power of this representation by expressing
a range of recent image processing applications in an embedded
domain specific language called Halide, and compiling them for
ARM, x86, and GPUs. Our compiler targets SIMD units, multiple
cores, and complex memory hierarchies. We demonstrate that it
can handle algorithms such as a camera raw pipeline, the bilateral
grid, fast local Laplacian filtering, and image segmentation. The al-
gorithms expressed in our language are both shorter and faster than
state-of-the-art implementations.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Languages

Keywords: Image Processing, Compilers, Performance

Links: DL PDF WEB CODE

1 Introduction

Computational photography algorithms require highly efficient
implementations to be used in practice, especially on power-
constrained mobile devices. This is not a simple matter of pro-
gramming in a low-level language like C. The performance differ-
ence between naive C and highly optimized C is often an order of
magnitude. Unfortunately, optimization usually comes at the cost
of programmer pain and code complexity, as computation must be
reorganized to achieve memory efficiency and parallelism.

(a) Clean C++ : 9.94 ms per megapixel

void blur(const Image &in, Image &blurred) {
Image tmp(in.width(), in.height());

for (int y = 0; y < in.height(); y++)

for (int x = 0; x < in.width(); x++)

tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

for (int y = 0; y < in.height(); y++)

for (int x = 0; x < in.width(); x++)

blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

}

(b) Fast C++ (for x86) : 0.90 ms per megapixel

void fast_blur(const Image &in, Image &blurred) {
m128i one_third = _mm_set1_epi16(21846);

#pragma omp parallel for

for (int yTile = 0; yTile < in.height(); yTile += 32) {
m128i a, b, c, sum, avg;

m128i tmp[(256/8)*(32+2)];

for (int xTile = 0; xTile < in.width(); xTile += 256) {
m128i *tmpPtr = tmp;

for (int y = -1; y < 32+1; y++) {
const uint16_t *inPtr = &(in(xTile, yTile+y));

for (int x = 0; x < 256; x += 8) {
a = _mm_loadu_si128(( m128i*)(inPtr-1));

b = _mm_loadu_si128(( m128i*)(inPtr+1));

c = _mm_load_si128(( m128i*)(inPtr));

sum = _mm_add_epi16(_mm_add_epi16(a, b), c);

avg = _mm_mulhi_epi16(sum, one_third);

_mm_store_si128(tmpPtr++, avg);

inPtr += 8;

}}
tmpPtr = tmp;

for (int y = 0; y < 32; y++) {
m128i *outPtr = ( m128i *)(&(blurred(xTile, yTile+y)));

for (int x = 0; x < 256; x += 8) {
a = _mm_load_si128(tmpPtr+(2*256)/8);

b = _mm_load_si128(tmpPtr+256/8);

c = _mm_load_si128(tmpPtr++);

sum = _mm_add_epi16(_mm_add_epi16(a, b), c);

avg = _mm_mulhi_epi16(sum, one_third);

_mm_store_si128(outPtr++, avg);

}}}}}

(c) Halide : 0.90 ms per megapixel

Func halide_blur(Func in) {
Func tmp, blurred;

Var x, y, xi, yi;

// The algorithm

tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

// The schedule

blurred.tile(x, y, xi, yi, 256, 32)

.vectorize(xi, 8).parallel(y);

tmp.chunk(x).vectorize(x, 8);

return blurred;

}

Figure 1: The code at the top computes a 3⇥3 box filter using the
composition of a 1⇥3 and a 3⇥1 box filter (a). Using vectorization,
multithreading, tiling, and fusion, we can make this algorithm more
than 10⇥ faster on a quad-core x86 CPU (b). However, in doing so
we’ve lost readability and portability. Our compiler separates the
algorithm description from its schedule, achieving the same perfor-
mance without making the same sacrifices (c). For the full details
about how this test was carried out, see the supplemental material.

ACM Transactions on Graphics, Vol. 31, No. 4, Article 32, Publication Date: July 2012
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age processing code requires sacrificing readability, portability, and
modularity. We argue that this is a consequence of conflating what
computations define the algorithm, with decisions about storage
and the order of computation. We refer to these latter two concerns
as the schedule, including choices of tiling, fusion, recomputation
vs. storage, vectorization, and parallelism.

We propose a representation for feed-forward imaging pipelines
that separates the algorithm from its schedule, enabling high-
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plifies the algorithm specification: images and intermediate buffers
become functions over an infinite integer domain, with no explicit
storage or boundary conditions. Imaging pipelines are compo-
sitions of functions. Programmers separately specify scheduling
strategies for the various functions composing the algorithm, which
allows them to efficiently explore different optimizations without
changing the algorithmic code.

We demonstrate the power of this representation by expressing
a range of recent image processing applications in an embedded
domain specific language called Halide, and compiling them for
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1 Introduction

Computational photography algorithms require highly efficient
implementations to be used in practice, especially on power-
constrained mobile devices. This is not a simple matter of pro-
gramming in a low-level language like C. The performance differ-
ence between naive C and highly optimized C is often an order of
magnitude. Unfortunately, optimization usually comes at the cost
of programmer pain and code complexity, as computation must be
reorganized to achieve memory efficiency and parallelism.

(a) Clean C++ : 9.94 ms per megapixel

void blur(const Image &in, Image &blurred) {
Image tmp(in.width(), in.height());

for (int y = 0; y < in.height(); y++)

for (int x = 0; x < in.width(); x++)

tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

for (int y = 0; y < in.height(); y++)

for (int x = 0; x < in.width(); x++)

blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

}

(b) Fast C++ (for x86) : 0.90 ms per megapixel

void fast_blur(const Image &in, Image &blurred) {
m128i one_third = _mm_set1_epi16(21846);

#pragma omp parallel for

for (int yTile = 0; yTile < in.height(); yTile += 32) {
m128i a, b, c, sum, avg;

m128i tmp[(256/8)*(32+2)];

for (int xTile = 0; xTile < in.width(); xTile += 256) {
m128i *tmpPtr = tmp;

for (int y = -1; y < 32+1; y++) {
const uint16_t *inPtr = &(in(xTile, yTile+y));

for (int x = 0; x < 256; x += 8) {
a = _mm_loadu_si128(( m128i*)(inPtr-1));

b = _mm_loadu_si128(( m128i*)(inPtr+1));

c = _mm_load_si128(( m128i*)(inPtr));

sum = _mm_add_epi16(_mm_add_epi16(a, b), c);

avg = _mm_mulhi_epi16(sum, one_third);

_mm_store_si128(tmpPtr++, avg);

inPtr += 8;

}}
tmpPtr = tmp;

for (int y = 0; y < 32; y++) {
m128i *outPtr = ( m128i *)(&(blurred(xTile, yTile+y)));

for (int x = 0; x < 256; x += 8) {
a = _mm_load_si128(tmpPtr+(2*256)/8);

b = _mm_load_si128(tmpPtr+256/8);

c = _mm_load_si128(tmpPtr++);

sum = _mm_add_epi16(_mm_add_epi16(a, b), c);

avg = _mm_mulhi_epi16(sum, one_third);

_mm_store_si128(outPtr++, avg);

}}}}}

(c) Halide : 0.90 ms per megapixel

Func halide_blur(Func in) {
Func tmp, blurred;

Var x, y, xi, yi;

// The algorithm

tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

// The schedule

blurred.tile(x, y, xi, yi, 256, 32)

.vectorize(xi, 8).parallel(y);

tmp.chunk(x).vectorize(x, 8);

return blurred;

}

Figure 1: The code at the top computes a 3⇥3 box filter using the
composition of a 1⇥3 and a 3⇥1 box filter (a). Using vectorization,
multithreading, tiling, and fusion, we can make this algorithm more
than 10⇥ faster on a quad-core x86 CPU (b). However, in doing so
we’ve lost readability and portability. Our compiler separates the
algorithm description from its schedule, achieving the same perfor-
mance without making the same sacrifices (c). For the full details
about how this test was carried out, see the supplemental material.

ACM Transactions on Graphics, Vol. 31, No. 4, Article 32, Publication Date: July 2012

Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines. Ragan-Kelley et al. (2012)

Clean C++: 9.94 ms per megapixel Fast x86 C++: 0.9 ms per megapixel

work 
efficiency locality

parallelism
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Parallelism in matrix-vector multiplication

for (int i=0; i<m; i++) 
  for (int j=0; j<n; j++) 
    y[i] += A[i*n+j] * x[j];x=

#pragma omp parallel for 
for (int i=0; i<m; i++) 
  for (int j=0; j<n; j++) 
    y[i] += A[i*n+j] * x[j];

x=

#pragma omp parallel for 
for (int k=0; k<m; i+=4) 
  for (int i=k; i<k+4; i++) 
    for (int j=0; j<n; j++) 
      y[i] += A[i*n+j] * x[j];

x=

for (int j=0; j<n; j++) 
  for (int i=0; i<m; i++) 
    y[i] += A[i*n+j] * x[j];x=

#pragma omp parallel for 
for (int j=0; j<n; j++) 
  for (int i=0; i<m; i++) 
    #pragma omp atomic 
    y[i] += A[i*n+j] * x[j];

x=
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Cache Hierarchies with typical latencies
CPU

L1 Cache

L3 Cache

CPU

L1 Cache

CPU

L1 Cache

L2 Cache L2 Cache L2 Cache

Main Memory

Solid State Disks

4 cycles

10 cycles

25 cycles

200 cycles

1-3 ms
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Spatial locality

Data Layout Order
a

0 1 2 3 4 5 6 7

Cache

Memory

CPU … = a[4];

a[4]

a[4] a
4 5 6 7

a
4

Avoid jumping around the address space

by not iterating along the data layout
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Temporal locality in matrix-matrix multiplication

x=

if matrix is large, row will have left the cache

x=

Aij = BikCkj

2x2 matrix multiply,

where the operations are


4x4 matrix multiplies

shorter reuse distance
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Buying locality with redundant work in fused stencils

for (int j=0; j<4; i++) 
  tmp[j] = (input[j-1] + input[j] + input[j+1]) / 3; 

for (int i=1; i<3; i++) 
  output[i] = (tmp[i-1] + tmp[i] + tmp[i+1]) / 3;

input

tmp

output

input

output

8 additions and

4 divides

4 additions and

2 divides

16 additions and

8 divides

Stencil loops

for (int i=1; i<3; i++) 
  output[i] = (  (input[i-2] + input[i-1] + input[i]  ) / 3 
               + (input[i-1] + input[i]   + input[i+1]) / 3 
               + (input[i]   + input[i+1] + input[i+2]) / 3 
              ) / 3;

Fused stencil loops
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Separation of algorithm from schedules

Algorithm

Language

Scheduling

Language

Compiler

CPUs

DSAs

GPUs

This idea was most clearly demonstrated in the Halide system
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General Principle: Separation of policy and mechanism

Separate by a clean API/language to:


• Solve one complex problem at a time


• Experiment with automatic policy systems 
without reimplementing mechanism


• Allow users to override default decisions 
with their own

Policy is deciding what to do

(decide what transformations to apply)

Mechanism is doing it

(generate code)

The Nucleus of a Multiprogramming System. P. Brinch Hansen (1970)
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Optimization strategies in compilers

1. Greedy or heuristic

2. Integer-linear programming

3. Beam search combined with ML

4. Autotuning with hill climbing, genetic algorithms, etc.

5. Or pick your favorite optimization strategy and


• Define an optimization space and a cost function


• Implement a search procedure



22

Example: Halide
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age processing code requires sacrificing readability, portability, and
modularity. We argue that this is a consequence of conflating what
computations define the algorithm, with decisions about storage
and the order of computation. We refer to these latter two concerns
as the schedule, including choices of tiling, fusion, recomputation
vs. storage, vectorization, and parallelism.

We propose a representation for feed-forward imaging pipelines
that separates the algorithm from its schedule, enabling high-
performance without sacrificing code clarity. This decoupling sim-
plifies the algorithm specification: images and intermediate buffers
become functions over an infinite integer domain, with no explicit
storage or boundary conditions. Imaging pipelines are compo-
sitions of functions. Programmers separately specify scheduling
strategies for the various functions composing the algorithm, which
allows them to efficiently explore different optimizations without
changing the algorithmic code.

We demonstrate the power of this representation by expressing
a range of recent image processing applications in an embedded
domain specific language called Halide, and compiling them for
ARM, x86, and GPUs. Our compiler targets SIMD units, multiple
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1 Introduction

Computational photography algorithms require highly efficient
implementations to be used in practice, especially on power-
constrained mobile devices. This is not a simple matter of pro-
gramming in a low-level language like C. The performance differ-
ence between naive C and highly optimized C is often an order of
magnitude. Unfortunately, optimization usually comes at the cost
of programmer pain and code complexity, as computation must be
reorganized to achieve memory efficiency and parallelism.

(a) Clean C++ : 9.94 ms per megapixel

void blur(const Image &in, Image &blurred) {
Image tmp(in.width(), in.height());

for (int y = 0; y < in.height(); y++)

for (int x = 0; x < in.width(); x++)

tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

for (int y = 0; y < in.height(); y++)

for (int x = 0; x < in.width(); x++)

blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

}

(b) Fast C++ (for x86) : 0.90 ms per megapixel

void fast_blur(const Image &in, Image &blurred) {
m128i one_third = _mm_set1_epi16(21846);

#pragma omp parallel for

for (int yTile = 0; yTile < in.height(); yTile += 32) {
m128i a, b, c, sum, avg;

m128i tmp[(256/8)*(32+2)];

for (int xTile = 0; xTile < in.width(); xTile += 256) {
m128i *tmpPtr = tmp;

for (int y = -1; y < 32+1; y++) {
const uint16_t *inPtr = &(in(xTile, yTile+y));

for (int x = 0; x < 256; x += 8) {
a = _mm_loadu_si128(( m128i*)(inPtr-1));

b = _mm_loadu_si128(( m128i*)(inPtr+1));

c = _mm_load_si128(( m128i*)(inPtr));

sum = _mm_add_epi16(_mm_add_epi16(a, b), c);

avg = _mm_mulhi_epi16(sum, one_third);

_mm_store_si128(tmpPtr++, avg);

inPtr += 8;

}}
tmpPtr = tmp;

for (int y = 0; y < 32; y++) {
m128i *outPtr = ( m128i *)(&(blurred(xTile, yTile+y)));

for (int x = 0; x < 256; x += 8) {
a = _mm_load_si128(tmpPtr+(2*256)/8);

b = _mm_load_si128(tmpPtr+256/8);

c = _mm_load_si128(tmpPtr++);

sum = _mm_add_epi16(_mm_add_epi16(a, b), c);

avg = _mm_mulhi_epi16(sum, one_third);

_mm_store_si128(outPtr++, avg);

}}}}}

(c) Halide : 0.90 ms per megapixel

Func halide_blur(Func in) {
Func tmp, blurred;

Var x, y, xi, yi;

// The algorithm

tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

// The schedule

blurred.tile(x, y, xi, yi, 256, 32)

.vectorize(xi, 8).parallel(y);

tmp.chunk(x).vectorize(x, 8);

return blurred;

}

Figure 1: The code at the top computes a 3⇥3 box filter using the
composition of a 1⇥3 and a 3⇥1 box filter (a). Using vectorization,
multithreading, tiling, and fusion, we can make this algorithm more
than 10⇥ faster on a quad-core x86 CPU (b). However, in doing so
we’ve lost readability and portability. Our compiler separates the
algorithm description from its schedule, achieving the same perfor-
mance without making the same sacrifices (c). For the full details
about how this test was carried out, see the supplemental material.
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Several auto-schedulers have been developed; a recent autoscheduler uses beam-search
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Example: Halide

Several auto-schedulers have been developed; a recent autoscheduler uses beam-search

Decoupling Algorithms from Schedules for 
Easy Optimization of Image Processing 

Pipelines. Ragan-Kelley et al. (2012)
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Figure 4: We model scheduling an imaging pipeline as the set of choices that must be made for each stage about how to evaluate each of its
inputs. Here, we consider blurred’s dependence on tmp, from the example in Fig. 1. blurred may inline tmp, computing values on demand
and not storing anything for later reuse (top left). This gives excellent temporal locality and requires minimal storage, but each point of tmp
will be computed three times, once for each use of each point in tmp. blurred may compute and consume tmp in larger chunks. This provides
some producer-consumer locality, and isolates redundant computation at the chunk boundaries (visible as overlapping transparent regions
above). At the extreme, blurred may compute all of tmp before using any of it. We call this root. It computes each point of tmp only once, but
requires storage for the entire region, and producer-consumer locality is poor—each value is unlikely to still be in cache when it is needed.
Finally, if some other consumer (in green on the right) had already evaluated all of tmp as root, blurred could simply reuse that data. If
blurred evaluates tmp as root or chunked, then there are further choices to make about the order in which to compute the given region of tmp.
These choices define the interleaving of the dimensions (e.g. row- vs. column-major, bottom left), and the serial or parallel evaluation of each
dimension. Dimensions may be split and their sub-dimensions further scheduled (e.g., to produce tiled traversal orders, bottom right).

Root: precompute entire required region. At the other ex-
treme, we can compute the value of the callee for the entire subdo-
main needed by the caller before evaluating any points in the caller.
In our blur example, this means evaluating and storing all of the
horizontal pass (tmp) before beginning the vertical pass (blurred).
We call this call schedule root. Every point is computed exactly
once, but storage and locality may be lost: the intermediate buffer
required may be large, and points in the callee are unlikely to still
be in a cache when they are finally used. This schedule is equiv-
alent to the most common structure seen in naive C or MATLAB
image processing code: each stage of the algorithm is evaluated in
its entirety, and then stored as a whole image in memory.

Chunk: compute, use, then discard subregions. Alterna-
tively, a function can be chunked with respect to a dimension of
its caller. Each iteration of the caller over that dimension first com-
putes all values of the callee needed for that iteration only. Chunk-
ing interleaves the computation of sub-regions of the caller and the
callee, trading off producer-consumer locality and reduced storage
footprint for potential recomputation when chunks required for dif-
ferent iterations of the caller overlap.

Reuse: load from an existing buffer. Finally, if a function is
computed in chunks or at the root for one caller, another caller may
reuse that evaluation. Reusing a chunked evaluation is only legal
if it is also in scope for the new caller. Reuse is typically the best
option when available.

Imaging applications exhibit a fundamental tension between to-
tal fusion down the pipeline (inline), which maximizes producer-
consumer locality at the cost of recomputation of shared values,
and breadth-first execution (root), which eliminates recomputation

at the cost of locality. This is often resolved by splitting a function’s
domain and chunking the functions upstream at a finer granular-
ity. This achieves reuse for the inner dimensions, and producer-
consumer locality for the outer ones. Choosing the granularity
trades off between locality, storage footprint, and recomputation.
A key purpose of our schedule representation is to span this contin-
uum, so that the best choice may be made in any given context.

Order of domain evaluation. The other essential axis of control
is the order of evaluation within the required region of each func-
tion, including parallelism and tiling. While evaluating a function
scheduled as root or chunk, the schedule must specify, for each di-
mension of the subdomain, whether it is traversed:

• sequentially,
• in parallel,
• unrolled by a constant factor,
• or vectorized by a constant factor.

The schedule also specifies the relative traversal order of the dimen-
sions (e.g., row- vs. column-major).

The schedule does not specify the bounds in each dimension. The
bounds of the domain required of each stage are inferred during
compilation (Sec. 5.2). Ultimately, these become expressions in the
size of the requested output image. Leaving bounds specification to
the compiler makes the algorithm and schedule simpler and more
flexible. Explicit bounds are only required for indexing expressions
not analyzable by the compiler. In these cases, we require the algo-
rithm to explicitly clamp the problematic index.

The schedule may also split a dimension into inner and outer com-
ponents, which can then be treated separately. For example, to rep-

Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines        •        32:5
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Example: TensorFlow and XLA

MatMul

b

x

w

input

Add ReLu

XLA compiler can generate a fused Add-ReLu

trained

dense tensors move

along edges

layer_1 = tf.nn.relu(tf.matmul(x, w) + b)  

A mapping system (with defaults) lets programmers control mapping to a cluster
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Example: Spiral

SPIRAL: Extreme Performance Portability. 
Franchetti et al. (2018)

A constrained rewriting system combined with an autotuner maps mathematical 
expressions to architectural templates

Franchetti et al.: SPIRAL: Extreme Performance Portability

algorithms rely on the availability of a BLAS library.
DxTer [149] transforms blocked algorithms such as those
generated by Cl1ck and applies transformations and refine-
ments to output high-performance, distributed-memory
implementations. The CLAK compiler [150] finds efficient
mappings of matrix equations onto building blocks from
high-performance libraries such as BLAS and LAPACK.

8) DSLs for Matrix and Stencil Optimization: Another
generative approach is adopted by Eigen [151],
uBLAS [152], the Matrix Template Library (MTL) [153],
STELLA [154], Halide [155], [156], and the Tensor
Algebra Compiler (TACO) [157], among others. They use
C++ expression templates to optimize the code at compile
time. Optimizations include loop fusion, unrolling, and
SIMD vectorization. The HTAs [82], [83], which offer data
types with the ability to dynamically partition matrices and
vectors, automatically handle situations of overlapping
areas. HTAs’ goal is to improve programmability by
reducing the amount of code required to handle tiling
and data distribution in parallel programs, leaving any
optimization to the programmer (or program generator).

9) Frameworks and Computer Algebra Systems: Systems
such as Sketch [158] and Paraglide [159] automatically
synthesize software according to a specification. Rewriting
systems are reviewed in [160]. Logic programming is dis-
cussed in [161]. An overview of functional programming
can be found in [162]. SPIRAL does not employ SAT solvers
but solves a specialized constraint programming problem
through term rewriting.

Python, R, Julia, MATLAB, Java, and C++, and frame-
works such as Caffe [163], Theano [164], and Ten-
sorFlow [165] are commonly used by data scientists
to express graph analytics and machine learning algo-
rithms. Computer algebra systems such as Maple [166],
YACAS [167], and Mathematica [168], interactive numer-
ical systems such as MATLAB [169], as well as interactive
theorem proving systems based on higher order logic [170]
and the R system for statistical computing [171] provide
interactive capabilities to solve complex problems in engi-
neering, mathematics, logic, and statistics. SPIRAL is built
on top of the computer algebra system GAP and uses many
of these concepts.

III. A L G O R I T H M A N D H A R D WA R E
A B S T R A C T I O N

We now discuss the different OL abstractions within SPIRAL

that we use to capture specifications, algorithms, algo-
rithmic degrees of freedom, hardware capabilities, and
program transformations. The key idea is to capture this
information into a single formal system that combines
multiple rewriting systems with constraint solving and
automatic performance tuning. Algorithms are captured
symbolically as data flow graphs that are expanded recur-
sively by identity rules. The target hardware is modeled
by the set of all data flow graph fragments it can execute
efficiently and a grammar that describes all programs that

Fig. 1. SPIRAL’s approach: The architecture space (red circle, left),

the algorithm space (blue circle, right), and program

transformations (shown as space in between) are abstracted in a

joint formal framework.

can be built from these fragments. Rewriting rules are
essentially program transformations that map an algorithm
to more efficient algorithms while preserving correctness.

The overall approach is shown in Fig. 1. The architecture
space (red circle, left), the algorithm space (blue circle,
right), and program transformations (shown as space in
between) are abstracted in a joint formal framework.
Abstracting the three components in a compatible way
allows SPIRAL to impose architecture requirements on
algorithms and utilize the necessary program transforma-
tions.

In this section, we first discuss the algorithm abstraction,
followed by the formalization of data layout and program
transformations, and finally the hardware abstraction.
In the next section (Section IV), we will discuss how these
abstractions interact to implement rewriting, constraint
solving, and autotuning in SPIRAL’s code synthesis process.

A. Algorithm Abstraction

1) Specification: In SPIRAL, the top-level objects are
specifications of computational kernels. A kernel is a func-
tion that performs a mathematical operation on its input
data to produce its output. Kernels are modeled as parame-
terizable mathematical operators that map vectors to vec-
tors. SPIRAL operators are stateless (any state would have
to be an explicit parameter and matching result value).
Higher-dimensional data are linearized and sparsity is
abstracted as discussed below. In general, operators can
take multiple-input vectors and produce multiple-output
vectors. We allow a range of mathematical base types for
the vectors, including fields (R, C, GF(k)), rings (Z, Zn

with n not prime), and semi-rings (e.g., min/sum semiring,
etc. [172]). Operators act as problem specifications in our
formal system.

For instance, the scalar product/dot product is mathe-
matically a bilinear operator and defined in SPIRAL as

< ., . >n: Rn × Rn → R; (x, y) #→ x · y. (1)
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Overview of lectures in the coming weeks

Lecture 10 
Notation  
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DSLs 

Lecture 6 
Sparse Programming 

Systems
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Dense Programming 

Systems
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Building DSLs  
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Algorithm

Language

Data Representation 
Language

Scheduling

Language

Compiler

CPUs

DSAs
Most of HW retargeting is about changing

schedules and data representations

Next up: separation of Algorithm, Schedule,

and Data Representation

GPUs


