Lecture 5 - Dense Programming Systems

Stanford CS343D (Fall 2020) Fred Kjolstad and Pat Hanrahan

Overview of lectures in the coming weeks

2

Terminology: Regular and Irregular

Fully Connected System

Regular System

З

Terminology: Dense and Sparse

Dense loop iteration space

$$y = Ax$$

Sparse loop iteration space

$$y = Ax$$

Dense applications

Dense Matrix-Vector Multiplication

Triagonal Solve

Timeline of some important developments in compilers and programming languages for dense compilers

Reorder (interchange)

for (int i=0; i<m; i++)</pre> for (int j=0; j<n; j++)</pre> A[i][j] = B[i][j] + C[i][j];

for (int j=0; j<n; j++)</pre> for (int i=0; i<m; i++)</pre> A[i][j] = B[i][j] + C[i][j];

for (int i=0; i<m; i++)</pre> a[i] = b[i] + c[i];

Split (Stripmine)

for (int k=0; k<m; k+=4)</pre> for (int i=k; i<k+4; i++)</pre> a[i] = b[i] + c[i];

for (int k=0; k<m; k+=4)</pre> for (int i=k; i<k+4; i++)</pre> a[i] = b[i] + c[i];

Vectorize

for (int k=0; k<m; k+=4)</pre> a[k:k+4] = b[k:k+4] + c[k:k+4];

for (int i=0; i<m; i++)</pre> a[i] = b[i] + c[i];for (int i=0; i<m; i++)</pre> d[i] = -b[i];

for (int i=0; i<m; i++)</pre> a[i] = b[i] + c[i];d[i] = -b[i];

for (int ij=0; ij<m*n; ij++)</pre> A[ij] = -B[ij];

11

Two models of loop optimization: source code rewrite and mathematical frameworks

Mathematical loop optimization frameworks include the polyhedral model (Lecture 11)

Optimizing dense codes require complex tradeoffs between parallelism, locality, and work efficiency

Clean C++: 9.94 ms per megapixel

```
void blur(const Image &in, Image &blurred) {
 Image tmp(in.width(), in.height());
 for (int y = 0; y < in.height(); y++)
 for (int x = 0; x < in.width(); x++)
  tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;
 for (int y = 0; y < in.height(); y++)
 for (int x = 0; x < in.width(); x++)
  blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;
}
```


Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines. Ragan-Kelley et al. (2012)

Fast x86 C++: 0.9 ms per megapixel

```
void fast_blur(const Image &in, Image &blurred) {
 __m128i one_third = _mm_set1_epi16(21846);
 #pragma omp parallel for
 for (int yTile = 0; yTile < in.height(); yTile += 32) {</pre>
  __m128i a, b, c, sum, avg;
  __m128i tmp[(256/8)*(32+2)];
  for (int xTile = 0; xTile < in.width(); xTile += 256) {</pre>
   __m128i *tmpPtr = tmp;
   for (int y = -1; y < 32+1; y++) {
   const uint16_t *inPtr = &(in(xTile, yTile+y));
    for (int x = 0; x < 256; x += 8) {
    a = \_mm\_loadu\_si128((\_m128i*)(inPtr-1));
    b = _mm_loadu_si128((_m128i*)(inPtr+1));
     c = _mm_load_sil28((_ml28i*)(inPtr));
    sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
     avg = _mm_mulhi_epi16(sum, one_third);
     _mm_store_sil28(tmpPtr++, avg);
     inPtr += 8;
   }}
   tmpPtr = tmp;
   for (int y = 0; y < 32; y++) {
    __m128i *outPtr = (__m128i *)(&(blurred(xTile, yTile+y)));
    for (int x = 0; x < 256; x += 8) {
     a = _mm_load_sil28(tmpPtr+(2*256)/8);
    b = _mm_load_sil28(tmpPtr+256/8);
     c = _mm_load_sil28(tmpPtr++);
     sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
     avg = _mm_mulhi_epi16(sum, one_third);
     _mm_store_sil28(outPtr++, avg);
}}}}
```

13

Parallelism in matrix-vector multiplication

14

Cache Hierarchies with typical latencies

Spatial locality

Avoid jumping around the address space by not iterating along the data layout

Data Layout Order

16

Temporal locality in matrix-matrix multiplication

if matrix is large, row will have left the cache

 $A_{ij} = B_{ik}C_{kj}$

2x2 matrix multiply, where the operations are 4x4 matrix multiplies

shorter reuse distance

Buying locality with redundant work in fused stencils

Stencil loops

```
for (int j=0; j<4; i++)
  tmp[j] = (input[j-1] + input[j] + input[j+1]) / 3;
for (int i=1; i<3; i++)
  output[i] = (tmp[i-1] + tmp[i] + tmp[i+1]) / 3;</pre>
```


Fused stencil loops

16 additions and 8 divides

Separation of algorithm from schedules

This idea was most clearly demonstrated in the Halide system

General Principle: Separation of policy and mechanism

Policy is deciding what to do (decide what transformations to apply)

The Nucleus of a Multiprogramming System. P. Brinch Hansen (1970)

Separate by a clean API/language to:

- Solve one complex problem at a time
- Experiment with automatic policy systems without reimplementing mechanism
- Allow users to override default decisions with their own

Optimization strategies in compilers

- 1. Greedy or heuristic
- 2. Integer-linear programming
- 3. Beam search combined with ML
- 4. Autotuning with hill climbing, genetic algorithms, etc.
- 5. Or pick your favorite optimization strategy and
 - Define an optimization space and a cost function
 - Implement a search procedure

Example: Halide

Func halide_blur(Func in) { Func tmp, blurred; Var x, y, xi, yi;

// The algorithm tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

// The schedule

blurred.tile(x, y, xi, yi, 256, 32).vectorize(xi, 8).parallel(y); tmp.chunk(x).vectorize(x, 8);

```
return blurred;
```

Several auto-schedulers have been developed; a recent autoscheduler uses beam-search

blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines. Ragan-Kelley et al. (2012)

Example: Halide

Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines •

Inline

Compute as needed, do not store

Serial y, Serial x										Serial x, Serial y							
1	2	3	4	5	6	7	8	1	9	17	25	33	41	49	57		
9	10	11	12	13	14	15	16	2	10) 18	26	34	42	50	58		
17	18	19	20	21	22	23	24	3	11	19	27	35	43	51	59		
25	26	27	28	29	30	31	32	4	12	2 20	28	36	44	52	60		
33	34	35	36	37	38	39	40	5	13	3 21	29	37	45	53	61		
41	42	43	44	45	46	47	48	6	14	22	30	38	46	54	62		
49	50	51	52	53	54	55	56	7	15	5 23	31	39	47	55	63		
57	58	59	60	61	62	63	64	8	16	6 24	32	40	48	56	64		

Several auto-schedulers have been developed; a recent autoscheduler uses beam-search

Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines. Ragan-Kelley et al. (2012)

32:5

23

Example: TensorFlow and XLA

A mapping system (with defaults) lets programmers control mapping to a cluster

 $layer_1 = tf.nn.relu(tf.matmul(x, w) + b)$

TensorFlow: A System for Large-Scale Machine Learning. Abadi et al. (2016)

Example: Spiral

A constrained rewriting system combined with an autotuner maps mathematical expressions to architectural templates

SPIRAL: Extreme Performance Portability. Franchetti et al. (2018)

Overview of lectures in the coming weeks

Next up: separation of Algorithm, Schedule, and Data Representation

