Lecture 6 - Sparse Programming Systems Stanford CS343D (Fall 2020) Fred Kjolstad and Pat Hanrahan ### Overview of lectures in the coming weeks ## Terminology: Regular and Irregular Fully Connected System Regular System Irregular System ## Three main classes of irregular systems Road Networks Random Sparsity #### Power Law Graphs ### Terminology: Dense and Sparse #### Dense loop iteration space ``` for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { y[i] += A[i*n+j] * x[j]; } }</pre> ``` $$y = Ax$$ #### Sparse loop iteration space ``` for (int i = 0; i < m; i++) { for (int pA = A2_pos[i]; pA < A_pos[i+1]; pA++) { int j = A_crd[pA]; y[i] += A[pA] * x[j]; } }</pre> ``` $$y = Ax$$ ### Three sparse applications areas Tensors Nonzeros are a subset of the cartesian combination of sets Relations | Names | City | Age | |--------|---------------|-----| | Peter | Boston | 54 | | Mary | San Fransisco | 35 | | Paul | New York | 23 | | Adam | Seattle | 84 | | Hilde | Boston | 19 | | Bob | Chicago | 76 | | Sam | Portland | 32 | | Angela | Los Angeles | 62 | A relation is a subset of the cartesian combination of sets Graphs Graph edges are a subset of the cartesian combination of sets #### Sparse Iteration Spaces ## Relations, graphs, and tensors share a lot of structure but are specialized for different purposes Relations | Names | City | Age | |--------|---------------|-----| | Peter | Boston | 54 | | Mary | San Fransisco | 35 | | Paul | New York | 23 | | Adam | Seattle | 84 | | Hilde | Boston | 19 | | Bob | Chicago | 76 | | Sam | Portland | 32 | | Angela | Los Angeles | 62 | Combine data to form systems Graphs Local operations on systems **Tensors** Global operations on systems ### Triangle counting on graphs, relations, and tensors On graphs On relations $$Q_{\triangle} = R(A, B) \bowtie S(B, C) \bowtie T(A, C)$$ On tensors $$\frac{1}{6}$$ trace(A^3). # Some important developments in compilers and programming languages for sparse compilers - 1960s: Development of libraries for sparse linear algebra - 1970s: Relational algebra and the first relational database management systems: System R and INGRES - 1980s: SQL is developed and has commercial success - 1990s: Matlab gets sparse matrices and some dense to sparse linear algebra compilers are developed - 2000s: Sparse linear algebra libraries for supercomputers and GPUs - 2010s: Graph processing libraries become popular, compilers for databases, and compilers for tensor algebra # Parallelism, locality, work efficiency still matters, but the key is choosing efficient data structures | Harry | Sally | George | Mary | Rita | |-------|-------|--------|------|------| | CS | EE | CS | ME | CS | # Sparse data structures in graphs, tensors, and relations encode coordinates in a sparse iteration space | Tensor (nonzeros) | Relation (rows) | Graph (edges) | |-------------------|--------------------------|-----------------------------------| | (0,1) | (Harry,CS)
(Sally,EE) | (V_1, V_5) (V_4, V_3) | | (2,3) (0,5) | (George,CS) | (V ₅ ,V ₃) | | (5,5) (7,5) | (Mary,ME)
(Rita,CS) | (v_3, v_5) (v_3, v_1) | Values may be attached to these coordinates: e.g., nonzero values, edge attributes $$row(3) = ???$$ $col(3) = ???$ # Iteration over sparse iteration spaces imply coiteration over sparse data structures Linear Algebra: A = B + C Tensor Index Notation: $A_{ij} = B_{ij} + C_{ij}$ Iteration Space: $B_{ij} \cup C_{ij}$ $$a_i = b_i c_i$$ + c_i$$ $$a_i = b_i + c_i$$ $$a_i = b_i + c_i$$ ### Merged coiteration code #### Intersection $b \cap c$ ``` int pb = b_pos[0]; int pc = c_pos[0]; while (pb < b_pos[1] && pc < c_pos[1]) { int ib = b_crd[pb]; int ic = c_crd[pc]; int i = min(ib, ic); if (ib == i && ic == i) { a[i] = b[pb] * c[pc]; } if (ib == i) pb++; if (ic == i) pc++; }</pre> ``` #### Union $b \cup c$ ``` int pb = b_pos[0]; int pc = c_pos[0]; while (pb < b_pos[1] && pc < c_pos[1]) {</pre> int ib = b_crd[pb]; int ic = c_crd[pc]; int i = min(ib, ic); if (ib == i && ic == i) { a[i] = b[pb] + c[pc]; else if (ib == i) { a[i] = b[pb]; else { a[i] = c[pc]; if (ib == i) pb++; if (ic == i) pc++; b \boldsymbol{\mathcal{C}} while (pb < b_pos[1]) {</pre> int i = b_crd[pb]; a[i] = b[pb++]; while (pc < c_pos[1]) {</pre> int i = c_crd[pc]; a[i] = c[pc++]; ``` ### Iterate-and-locate examples (intersection) $$a = \sum_{i} b_{i} c_{i}$$ ``` for (int pb = b_pos[0]; pb < b_pos[1]; pb ++) { int i = b_crd[pb]; a[0] += b[pb] * c[i]; }</pre> ``` #### Separation of Algorithm, Data Representation, and Schedule # Data independence separates algorithm from data layout and order of computation - You want a logical (abstract) representation that exposes only characteristics of the data — not how the data is stored - Tree models and network models require programmers to write programs to traverse indices - If the indices change, the programs must change - A flat abstract view—as coordinates—allows the system to change data representation without users changing their programs - Underneath the hood, the system can impose hierarchies and networks ### Tree models, to network models, to the relational model A Relational Model of Data for Large Shared Data Banks. *Codd* (1970) The Programmer as Navigator. Bachman (1974) What Goes Around Comes Around. Stonebraker and Hellerstein (2005) # Data structures in relational database management systems - Row stores for efficient insertion - Column stores for spatial locality during scans - B-trees to efficiently support sorted data - Hash maps for random access - Tries for compression - Spatial data structures for geo-spatial queries But database management systems are still rewritten for each new major data structure ### Separation of algorithm, schedule, and formats in tensor algebra #### **Tensor Expression** #### Formats Dense Matrix CSR BCSR COO DCSR ELLPACK CSB DIA Blocked COO CSC Blocked DIA DCSC Sparse vector Hash Maps CSF Dense Tensors Blocked Tensors #### Schedule reorder split collapse precmpute gpu unroll parallelize ### Tensor algebra format data representation language | CSR | |------------| | Dense | | Compressed | | CSF | |------------| | Dense | | Compressed | | Compressed | | Coordinate matrix | | |-------------------|--| | Compressed | | | Singleton | | | BCSR | |------------| | Dense | | Compressed | | Dense | | Dense | | | Hash map vector Hashed ### Tensor algebra scheduling language - reorder(i, j) interchanges loops i and j - **split(i, i₁, i₂, d, s, t)** strip-mines i into two loops i₁ and i₂, where i₁ or i₁ is of size s depending on the direction d. The tensor t is optional and, if given, means the loop is strip-mined w.r.t. its nonzeros. - collapse(i, j, f) collapses loops i and j into a new loop f, which iterates over their Cartesian combination. - precompute(S, e, t, I) precomputes expression e in index statement S before the loops I and stores the results in tensor t. - unroll, parallelize, vectorize, ... ### Overview of lectures in the coming weeks