Lecture 6 - Sparse Programming Systems

Stanford CS343D (Fall 2020)
Fred Kjolstad and Pat Hanrahan

Overview of lectures in the coming weeks

DSLs

Lecture 3\/
Building DSLs

Lecture 4 \/
Collection-Oriented
Languages

/|

Lecture 11
Polyhedral Model

Lecture 10
Notation

N

Lecture 5 \/
Dense Programming
Systems
Lecture ©
Sparse Programming
Systems

Lecture 7
lteration Theory |

-
~

Lecture 8
iteration Theory Il

Terminology: Regular and Irregular

Fully Connected System

s
pSa=
AN
N ‘!

Regular System

Irregular System

Three main classes of irregular systems

Road Networks Random Sparsity

Power Law Graphs

Terminology: Dense and Sparse

Dense loop iteration space Sparse loop iteration space
.? ? o 0 © ?
o o oll o o o 02#1 ?E‘ Y
> o A O el el B > o .
oo o o o o o o ® o
! i%z a8 .m*%
o+ + 693 o ® + ®
oo oqégooo ° oo
°* o +d% o o o o# o o o
o O ® o O ‘. }
° o éi }:oo ® ° o o ?oo
for (int 1 = 0; i < m; i++) { for (int 1 = 0; i < m; i++) {
for (int j = 0; j < n; j++) A{ for (int pA = A2_pos[i]; pA < A_pos[i+1l]; pA++) {
y[i] += A[ikn+j] * xI[j]; int j = A_crd[pAl;
} y[i] += Al[pA]l *x xI[jl];
¥ , ¥

y = AX y = AXx

Three sparse applications areas

Tensors

Relations

Graphs

Age

54
35
23
84
19
76
32
62

e

Nonzeros are a subset of the
cartesian combination of sets

A relation is a subset of the
cartesian combination of sets

Graph edges are a subset of the
cartesian combination of sets

Sparse lteration Spaces

J

Relations, graphs, and tensors share a lot of structure but

are specialized for different purposes

Relations

Graphs

Tensors

Age

54
35
23
84
19

32
62

S

Combine data to
form systems

Local operations
on systems

Global operations
on systems

Relations

Solves

Tensor

Filters

Pagerank

Triangle
Counting

Dijkstra’s
Algorithm

Graphs

Triangle counting on graphs, relations, and tensors

On graphs On relations On tensors

1 3
0. = R(A,B) < S (B,C) = T(A,C) 5 trace(A’).

Some important developments in compilers and
programming languages for sparse compilers

» 1960s: Development of libraries for sparse linear algebra

» 1970s: Relational algebra and the first relational database
management systems: System R and INGRES

« 1980s: SQL is developed and has commercial success

» 1990s: Matlab gets sparse matrices and some dense to sparse linear
algebra compilers are developed

» 2000s: Sparse linear algebra libraries for supercomputers and GPUs

» 2010s: Graph processing libraries become popular, compilers for
databases, and compilers for tensor algebra

Parallelism, locality, work efficiency still matters,
but the key Is choosing efficient data structures

work locality
efficiency
work locality
efficiency
parallelism
parallelism data structures
0 2
0 2
Harry CS O|1 3
Sally EE Harry Sally George Mary Rita ol ol
George CS CS EE CS ME CS
Mary ME O/ 3 5 8
Rita CS o 2|3 0 2|12 3
30/40 /50 10, 70802060

Sparse data structures in graphs, tensors, and relations
encode coordinates in a sparse iteration space

Tensor (honzeros) Relation (rows) Graph (edges)
(Harry,CS) |
(0,1) (Sally,EE) (1.v5) (Va4,V3)
(2,3) (0.5) (George,CS) (Vs,Vs)
Mary,ME
(55) (7.5) Riacs) oM wavs) VY

Values may be attached to these coordinates: e.g., nonzero values, edge attributes

11

Hierarchically compressed data structures (tries)
reduce the number of values that need to be stored

0| A B

l C|D|E

2 F
A B C D E F

|0

12

Hierarchically compressed data structures (tries)
reduce the number of values that need to be stored

12

Hierarchically compressed data structures (tries)
reduce the number of values that need to be stored

row(3) = 77?7
col(3) = 7?7
A B C

12

Hierarchically compressed data structures (tries)
reduce the number of values that need to be stored

Coordinate 0

rows O O 1|1 1 2

cols O 2 1 2|3 3

FOWS

cols

Hierarchically compressed data structures (tries)
reduce the number of values that need to be stored

Coordinate

111

12

Hierarchically compressed data structures (tries)
reduce the number of values that need to be stored

Coordinate pyplicates 0

/

rows O O1 1|1 1]2

cols O 2 1 2|3 3

Hierarchically compressed data structures (tries)
reduce the number of values that need to be stored

Compressed Sparse Rows (CSR) 0

0 | 2 3

pos O 2 | 5 | 6

| C
cols|JO ;_|1 2 3|3\ ’

lteration over sparse Iteration spaces imply coiteration
over sparse data structures

Linear Algebra: A =B+ C
Tensor Index Notation: Azj — Bij + CU.

lteration Space: Bij U Cij

union because x + 0 = x

SRS
® ® ®
Sasdnsas B
® ®
. . . pos |0 | 3|58 pos | O
® ¢+ ° U
. * oo ° colsjo|2|(3 /021|238 cols| 0
o O
Ve e °* o . vals 30 40 50|10 70 80| 20 60 vals| 2
*o }
° ° o o Too >

N 7

colterate

Merged coiteration

Coordinate Space

14

Merged coiteration

Coordinate Space

~N OO o0 &~ W0 N 2+ O

X

N OO o~ W0 N =+ O

14

Merged coiteration

Coordinate Space

~ o O 4 O

14

Merged coiteration

Coordinate Space

N~ | o oo

14

Merged coiteration

Coordinate Space

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

N~ | o oo

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

N~ | o oo

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

N~ | o |2 o

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

N~ | ol oo

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

N~ | ol oo

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

N~ | ol oo

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

~lo | oo

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

~lo | oo

b: + c;

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

1N

~lo | oo

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

N~ | o oo

b: + c;

14

Merged coiteration code

Intersection b N ¢

int pb = b_pos[0];
int pc = c_pos|[0];
while (pb < b pos[l] && pc < c_pos[1]) A
int ib = b_crd[pb];
int ic = c_crd[pc];
int 1 = min(ib, ic);
if (ib == 1 && ic == 1) A
alil = blpbl * clpcl;

}
if (ib == 1) pb++;
if (ic == i) pc++;
I3
b C

Union b U ¢

int pb = b_pos[0];
int pc = c_pos|[0];
while (pb < b pos[l] && pc < c_pos[1]) A
int ib = b_crdpb];
int ic = c_crd[pc];
int 1 = min(ib, ic);
if (ib == i && ic == i) A
\ alil = b[pbl + clpcl;
else if (ib == i) {
alil = blpbl;

I

else {

\ ali] = clpcl;

if (ib == 1i) pb++;
if (ic == 1) pc++;

}

while (pb < b_pos[1]) {
int 1 = b_crd[pbl;
alil = blpb++];

¥

while (pc < c_pos[1]) {
int i = c_crdlpcl;
ali]l = clpc++];

}

15

lterate-and-locate examples (intersection)

a = 2 b.c;

iterate over b locate from c

\\\\\ ///// for (int pb = b_pos[@]; pb < b_pos[1]; pb ++) {
int l = b_Crd[pb];

b C , al@0] += blpb]l x clil;

106

Separation of Algorithm, Data Representation, and Schedule

(intel®>
Algorithm L it
Language w o |

Data Representation

Language Compiler

Scheduling
Language

Most of HW retargeting is about changing
schedules and data representations

Data independence separates algorithm from data layout
and order of computation

» You want a logical (abstract) representation that exposes only
characteristics of the data — not how the data is stored

» [ree models and network models require programmers to write
programs to traverse indices

» |f the Indices change, the programs must change

» A flat abstract view—as coordinates—allows the system to change data
representation without users changing their programs

» Underneath the hood, the system can impose hierarchies and networks

A Relational Model of Data for Large
Shared Data Banks. E. F. Codd (1970)

18

Tree models, to network models, to the relational model

Tree model (1960s) Network model (1970s) Relational model
(e.q., IMS) (e.g., CODASYL)

\ !

/ \\ (Harry,3245,CS)
/ (Sally,7264,EE)
(George,1379,EE)

(Mary,1733,ME) (CS,George)

(Rita2357.CS) | | (EE Mary)

AN / <

Programmer as navigator (Harry,3245,C5,George)
(Sally,7264,EE,Mary)

Programmer controls streams (George,1379,CS,George)
(Rita,2357,CS,George)

A Relational Model of Data for Large v
Shared Data Banks. Codd (1970)

The Programmer as Navigator. What Goes Around Comes Around.
Bachman (1974) Stonebraker and Hellerstein (2005)

19

Data structures in relational database management
systems

* Row stores for efficient insertion

- Column stores for spatial locality during scans
- B-trees to efficiently support sorted data

- Hash maps for random access

» Tries for compression

- Spatial data structures for geo-spatial queries

But database management systems are still rewritten for each new major data structure

20

Separation of algorithm, schedule, and formats in tensor algebra

Tensor Expression

A= Bc+a a = Be
A=BoC A=B+C a=aBc+ Ba THE
A=aB A=0 A= BC
A= BCd “ .
a=boc A:BG)(CD)
Aij —ZBMCZJDkJ A=BT 4¢=B"Bc

! ZBjkcJ Apj = ZBMCZ]

o NI I OCRAVIMING
PROGRAMMIN
€= ZM PieMix P 7 = Z ZZJ i) (Y 21bin) LANGUAGE

k
a= Y M;PjMyPy, M P oMy, Pip
17klmnop

Formats
Dense Matrix CSR BCSR

DCSR
COO ELLPACK CSB

Ja Blocked COO csC Sparse Tensor Algebra SANVIDIA.

Blocked DIA DCSC Compiler (taco)
Hash Maps

Sparse vector
CSF Dense Tensors

Blocked Tensors

Schedule
reorder
split |
precmpute CO apse @ < €] [) https://github.com/tensor-compiler/taco & o th Ol
gpu unroll parallelize O Search or jump to... / Pulls Issues Marketplace Explore 5 4+~ @~

(wrk n progress)

- tensor-compiler / taco & Unwatch v 51 W Unstar 761 Y Fork 95

21

Tensor algebra format data representation language

J1 J2 J3 / @ @ path Dense
level /
i1l a | b C
nld el £ siblings— @) G2 @) () G2) (o) Go) G2) Us) Compressed
i3 & | h |1 .
allp dlilel|f ||| h|]i
CSR CSF Coordinate matrix BCSR Hash map vector
Dense Dense Compressed Dense Hashed
Compressed Compressed Singleton Compressed
Compressed Dense

Dense

22

Tensor algebra scheduling language

» reorder(i, j) interchanges loops | and |

- split(i, 11, I2, d, s, t) strip-mines i into two loops i1 and i2, where i1 or i1 IS
of size s depending on the direction d. The tensor t is optional and, if
given, means the loop is strip-mined w.r.t. its nonzeros.

 collapse(l, J, f) collapses loops | and j into a new loop f, which iterates
over their Cartesian combination.

« precompute(S, e, t,) precomputes expression e in index statement S
before the loops | and stores the results in tensor t.

- unroll, parallelize, vectorize, ...

23

Overview of lectures in the coming weeks

DSLs

Lecture 3\/
Building DSLs

Lecture 4 \/
Collection-Oriented
Languages

/|

Lecture 11
Polyhedral Model

Lecture 10
Notation

N

Lecture 5 \/
Dense Programming
Systems

Lecture 6 \/
Sparse Programming
Systems

Lecture 7

lteration Theory |

-
~

Lecture 8
lteration Theory Il

24

