Building DSLs 2

Pat Hanrahan

CS343d
Fall 2021

Recap

External (Extrinsic) DSL
m Standalone language
m e.g. matlab, R
Embedded (Intrinsic) DSL
m Embedded in a host language

m e.g. pytorch, tensorflow

Recap

Shallow Embedding
® Runs directly in the host language
Deep Embedding

m Represents the DSL as an AST and
compiles/interprets that AST

PL Features for DSLs

Types
m Algebraic data types for creating ASTs

m Parameterized types and polymorphism
m Metaclasses
Higher order functions and lambdas
Metaprogramming

Flexible and extensible syntax

Today’s Topics

Macros

Functors
Dependent types
Partial evaluation

Next week: Notation

Macros

Relevance

Macros are programs evaluated at
compile-time, not run-time (staged
program)

Resurgence in interest in providing
macros for programming languages
(Terra, Rust, ...)

Text macros (e.g. cpp) vs Lisp macros.

% cpp | gcc -E
#idefine NULL ©
#define SQUARE(x) x*x
SQUARE (1+2)

// results in
1+2*1+2

// defensive programming
#define SQUARE(x) ((x)*(x))

// cpp 1s not “aware” of C

// conditional macros

// expressions?

#ifdef LINUX

;endif

// expressions in predicate?

#if defined(LINUX) ..
#if VERSION > 1.0 ..

prep: uses python mako templating engine
<%

n = 10
ns = range(10)
76>\

#include <stdio.h>

void main(void) {
int a = ${n};

% for 1 in ns:

% if i != 5:
${i};

% endif

% endfor

}

Lisp Macros

lisp/scheme s-expressions

$ racket

> (+ 1 2)

3

> (¥ (+ 1 2) 4)
12

> (define x 5)
> (/ 10 x)

2

> (define (square x) (* x x))
> (square 5)

25

; homoiconic: lists = code|data

> (define 1 (list 1 2 3))
> 1

(1 2 3)

> (car 1)

1

> (cdr 1)

(2 3)

> (cadr 1)

2

3

3

special forms

normally function arguments
are evaluated left-to-right
before the function is called

; sometimes function arguments
; are evaluated differently.

; these functions are special forms
(deflne X 2)

(if cond true-expr false-expr)

(or exprl expr2)

(for [(i 10)] (displayln i))

Macro Definitions in Lisp

Timothy Harris
Abstract
In LISP 1.5 special forms are used for three logically separate
purposes: a) to reach the alist, b) to allow functions to have an

indefinite number of arguments, and ¢) to keep arguments from

being evaluated. New LISP interpreters can easily satisfy need (a)

https://github.com/acarrico/ai-memo

; quote

> (+ 1 2)

3

> (quote (+ 1 2))
"(+ 1 2)

> (list '+ 1 2)
"'(+ 1 2)

;3 hotation

> "(+ 1 2)

"(+ 1 2)

> (eval "(+ 1 2 3))
6

meta-programming
implement (when pred expr)

> (define (convert whenlist)
(list 'if (nth whenlist 1)

(nth whenlist 2)

(void)))
> (define s '(when (> 2 1)

(display "true\n")))

> (convert s)
"(if (> 2 1) (display "true\n") #<void>)
> (eval (convert s))
true

1 quasiquote

> (define x 2)

> (quasiquote (+ 1 x))

"(+ 1 x)

> (quasiquote (+ 1 (unquote x)))

"'(+ 1 2)

> (quasiquote (+ 1 (unquote Xx)
(unquote-splicing ' (2

2))))

'(+1222)

; short-hand (note backquote ")
> (+ 1 ,x ,@(1list 2 2))
"(+ 12 2 2)

meta-programming
implement (when pred expr)

> (define (convert when)
“(if ,(nth when 1)

, (nth when 2)

» (void)))
> (define s '(when (> 2 1)

(display "true\n")))

> (convert s)
"(if (> 2 1) (display "true\n") #<void>)
> (eval (convert s))
true

macros

> (define-macro (when test expr)
“(if ,test ,expr ,(void)))

> (when (> 2 1) 1)
1

; 1. the arguments to the macro
K are NOT evaluated (they are quoted)
; 2. The returned list is evaluated

; 1t’s that simple!

Extensions

Hygienic macros
m Variable capture

Syntax macros

Terra

Zach DeVito

Terra is meta-programmed from Lua

Evaluation Semantics

function gen_square(x)
return x * x
end

In Lua, a quotation creates
a Terra expression.

terra mse(a: float, b: float)
return [gen_square(a)] - [gen_square(b)]
end

In Terra, an escape splices
the value of a Lua expression
into Terra code.

~EYalyation

> lua execution
function gen square(x)
return x * X

vend

—>» terra sqd(a: float, b: float)

Semantics., ..

reaches a Terra function or quote
expression

2. The Terra expression is
specialized, by evaluating all
escaped Lua expressions.

return [gen_square(a)] - [gen_square(b)]

end

print(mse(3,2))

Evaluation Semaptics .
Evaluation Semantics.., ..

reaches a Terra function or quote

function gen_square(x) expression
return x * X
end

2. The Terra expression is
specialized, by evaluating all
escaped Lua expressions.

terra sqd(a: _float, b: float): float
return [t‘ “a * é)] - [gen_square(b)]
end |

print(mse(3,2))

Evaluation Semaptics .
Evaluation Semantics.., ..

reaches a Terra function or quote

function gen_square(x) expression
return x * X
end

2. The Terra expression is
specialized, by evaluating all
escaped Lua expressions.

terra sqd(a: float, b: float) ___ |
return [a *a] - [&fb * b _)]
end

print(mse(3,2))

Evaluation Semantics .
Evaluation Semantics.., ..

reaches a Terra function or quote

function gen_square(x) expression
return x * X
end

2. The Terra expression is
specialized, by evaluating all
escaped Lua expressions.

terra sqd(a: float, b: float) |
return ;’ a*a - b * b ﬂ)
end) " |

—> print(mse(3,2))

Evaluation Semaptics .
Evaluation Semantics.., ..

reaches a Terra function or quote

function gen_square(x) expression
return x * X
end

2. The Terra expression is
specialized, by evaluating all
escaped Lua expressions.

terra sqd(a: float, b: float)
return a * a - b * b
end

3. The Terra function is
—> print(mse(3,2)) evaluated as Terra
> 5

Lua
® Dynamically-typed, polymorphic
m Garbage collection
m Efficient interpreter (LualIT)
Terra
m Statically-typed, monomorphic

® Manual memory management

m Staged (JIT) compilation via LLVM
Terra-Lua system

® Lua meta-programs Terra

® Similar syntax, shared lexical state

m Co-embedded languages (call back/
forth)

References

Paul Graham, On Lisp
(http://www.paulgraham.com/onlisp.html)

Doug Hoyte, Let over Lambda
(https://letoverlambda.com/index.cl/toc)

Racket macros
(https://docs.racket-lang.org/guide/
macros.html)

Terra
(https://terralang.org/)

Functors

Array Language

A way to create a DSL ...
Define a type Array[T]
m A vector of elements of type T

m All the operations on T apply to
Array|T]

me.g. a, b: Array[Float], a+b is
allowed

Functors F(a)

F is a function that maps type a to type b

https://bartoszmilewski.com/2015/01/20/functors/

Functors F(a)

F is a function that maps type a to type b

b = f(CI)

f maps values of type a to values of type b

Functors F(a)

class Functor f where
fmap :: (a -> b) -> (f a -> f b)

data List a = Nil | Cons a (List a)

fmap :: (a -> b) -> (List a -> List b)
fmap f Nil = Nil
fmap ¥ (Cons x xs) = Cons (f x) (map f xs)

— Must obey the Functor Laws ..
fmap id = id
fmap f o g = fmap f o fmap g

— example
add = fmap (curry (+))
sub = fmap (curry (-))

kore - python implementation of k

import operator

from kore import every # recursive map

neg = every(operator.
add = every(operator.
sub = every(operator.
mul = every(operator.
div = every(operator.

heg)
add)

sub)
mul)
div)

floordiv = every(operator.floordiv)

mod = every(operator.
min2 = every(min)
max2 = every(max)

sign = every(lambda x: x if X

< 0 else 1)

mod)

O else -1 if x

Array|T, n]

What if you want to parameterize an
array by its length?

Can’t be done using today’s type
systems!

Need dependent types

— A dependent type is a parameterized type that
— depends on a value (not just other types)

data Vec (A : Set) : Nat - Set where
[] :Vec A ©

t: ¢ {n : Nat} - A - Vec An - Vec A (n+l)

infixr 5 _::
— A dependent function type is where the type of
— the output can be different depending on

— the runtime value of the input type parameters.

_++ : Vec Am->Vec An-Vec A (m+ n)
[] ++ Vec ys = ys
(x :: xs) ++ Vec ys = x :: (xs ++ Vec ys)

Generators and DSLs

Dependent types allow you to write generators
that depend on values, not just types.

gen mux : T->int->((Vec T n)->(Vec int (clogn n))->T)
gen Mux T n = ..

A type can define a language via an AST type, and
values of the type are programs in that language.

Dependent types allow you to create type-safe
interpreters.

References

Dependent Types at Work
Ana Bove and Peter Dybjer

Programming and Proving in Agda
Jesper Cockz

Programming Language Foundations in Agda,
Philip Wadler, Wen Kokke, and Jeremy Siek
(https://plfa.github.io/)

Certified Programming with Dependent Types
Adam Chilipala
(http://adam.chlipala.net/cpdt/)

Partial Evaluation

(Specialization)

Partial Evaluation

Partial evaluation takes a function with
some known and some unknown inputs.

partial :: (known -> unknown -> output)
-> known
-> (unknown -> output)

It converts a general function to a
specialized function

a(m,n) = if m = 0 then nt+l else

At
jnpmo p = if n = 0 then a(m-1,1) else

program

a(m-1,a(m,n-1))

Program p, specialized to static input m = 2:

a2(n) = if n=0 then al(l) else al(a2(n-1))
pe = | al(n) = if n=0 then al0(1l) else al(al(n-1))

a0(n) = n+1

See Partial Evaluation and Automatic Program Generation,
Neil Jones, Carsten Gomard, Peter Sestoft

(https://www.itu.dk/people/sestoft/pebook/pebook.html)

Techniques

1. Constant folding
2, Loop unrolling / unfold functions
3. Remove conditionals

4. Function inlining

The Three Projections

of

Doctor Futamura

http://blog.sigfpe.com/2009/05/three-projections-
of-doctor-futamura.html

Specialized Machine

Collect MN&

machine ::

input -> output

)

Programmable (CNC) Machine

.@ ?
O e
~— ([XY

=5 ©

interpreter :: program -> input -> output

Convert a Programmable Machine
into a Specialized Machine

insert
blank

Compiling the program! o ey |

ﬁ M Converts a machine
| 0eseea0 V) with two inputs
I Q to a machine

\ with one input,

given the first input

Q0000
Seecialiser

Wi

@oo/

specializer : (inputl -> input2 -> output) -> inputl -> (input2 -> output)

Dr. Futamura’s
@ First Projection

Use a specializer to convert

an interpreter
and a program
into a specialized program

/ Compiling the program!

aoooo

Qo000

SRC ql Ser

Wil

\ et
[enr

compiled =

cotedt weee L

specializer interpreter program

\
E\Z\

Dr. Futamura’s
Second Projection

Use a specializer
to convert

a specializer

and interpreter

/ info a specialized

specializer

Q2000
g .o

Qooo0
SQC!QLS?F

/\ for this interpreter

% ﬂ Create a Compiler!

—_—

compiler =

]
—

™
-~ N
2N —_
-~y \ ..; J -~

s | . -~
’ \ s~)
X\/'

—~ _
.-

specializer specializer interpreter

S Dr. Futamura’s

Third Projection

\
S\Z\

ooooo

90000
Seecialiser

\
Slio

The output X is

a specializer optimized
for converting interpreters
info compilers

/\ A compiler compiler!

\

)
X?

compiler* = specializer specializer specializer

References

Partial Evaluation and Automatic Program Generation,
Neil Jones, Carsten Gomard, Peter Sestoft
(https://wwwi.itu.dk/people/sestoft/pebook/pebook.html)

Finally Tagless, Partially Evaluated Tagless Staged
Interpreters for Simpler Typed Languages Jacques Carette,
Oleg Kiselyov and Chung-chieh Shan

AnyDSL: A Partial Evaluation Framework for Programming
High-Performance Libraries

Roland Leifa, Klaas Boesche, Sebastian Hack, Arsene
Pérard-Gayot, Richard Membarth, Philipp Slusallek, André
Miller, and Bertil Schmidt

Proceedings of the ACM on Programming Languages
(PACMPL), 2(OOPSLA), 2018. (HiPEAC 2018 Paper Award)

Doctor Futamura’s Three Projections

1. Compiling specific programs to
specialized machines.

2. Making a compiler from an interpreter.

3. Making a compiler compiler for
converting interpreters into compilers.

Summary

Mechanisms that makes it easier to
create DSLs

m Macros
m Functors
m Dependent types

m Partial evaluation

Programming
Language

5

hird Edition 1

Anders Hejlsberg

This book, too, is in its third edition. A complete technical specification of the C# pro-

gramming language, the third edition differs in several ways from the first two. Most

notably, of course, it has been updated to cover all the new features of C# 3.0, including
object and collection initializers, anonymous types, lambda expressions, query expres-
sions, and partial methods. Most of these features are motivated by support for a more
functional and declarative style of programming and, in particular, for Language Inte-
grated Query (LINQ), which offers a unified approach to data querying across different
kinds of data sources. LINQ, in turn, builds heavily on some of the features that were
introduced in C# 2.0, including generics, iterators, and partial types.

C#’s Functional Journey

Mads Torgersen, Microsoft

Transcript Q

Torgersen: I'm Mads Torgersen. | am the current lead designer of C#. I've been that FEB 2.
for a good half decade now, and worked on the language for about 15 years. It's just
a bit older than that, about two decades old. During that, it's gone through a
phenomenal journey of transformation. Started out as a very classic, very turn of the
century mainstream object-oriented language, and has evolved a lot. Many of the
things that happened over time, were inspired/borrowed/stolen from the functional
world. There's been a lot of crossover there. REL

https://www.infoq.com/presentations/c-sharp-functional-features/

