Lecture 6 - Sparse Programming Systems

Stanford CS343D (Fall 2021) Fred Kjolstad

Lecture Overview

Terminology: Regular and Irregular

Fully Connected System

Regular System

Irregular System

Three main classes of irregular systems

Road Networks

Fractional Sparsity

Power Law Graphs

Terminology: Dense and Sparse

Dense loop iteration space


```
for (int i = 0; i < m; i++) {
  for (int j = 0; j < n; j++) {
    y[i] += A[i*n+j] * x[j];
  }
}</pre>
```

$$y = Ax$$

Sparse loop iteration space


```
for (int i = 0; i < m; i++) {
  for (int pA = A2_pos[i]; pA < A_pos[i+1]; pA++) {
    int j = A_crd[pA];
    y[i] += A[pA] * x[j];
  }
}</pre>
```

$$y = Ax$$

Three sparse applications areas

Tensors

Nonzeros are a subset of the cartesian combination of sets

Relations

Names	City	Age
Peter	Boston	54
Mary	San Fransisco	35
Paul	New York	23
Adam	Seattle	84
Hilde	Boston	19
Bob	Chicago	76
Sam	Portland	32
Angela	Los Angeles	62

A relation is a subset of the cartesian combination of sets

Graphs

Graph edges are a subset of the cartesian combination of sets

Sparse Iteration Spaces

Relations, graphs, and tensors share a lot of structure but are specialized for different purposes

Relations

Names	City	Age
Peter	Boston	54
Mary	San Fransisco	35
Paul	New York	23
Adam	Seattle	84
Hilde	Boston	19
Bob	Chicago	76
Sam	Portland	32
Angela	Los Angeles	62

Combine data to form systems

Graphs

Local operations on systems

Tensors

Global operations on systems

Triangle counting on graphs, relations, and tensors

On graphs

On relations

$$Q_{\triangle} = R(A, B) \bowtie S(B, C) \bowtie T(A, C)$$

On tensors

$$\frac{1}{6}$$
trace(A^3).

Some important developments in compilers and programming languages for sparse compilers

- 1960s: Development of libraries for sparse linear algebra
- 1970s: Relational algebra and the first relational database management systems: System R and INGRES
- 1980s: SQL is developed and has commercial success
- 1990s: Matlab gets sparse matrices and some dense to sparse linear algebra compilers are developed
- 2000s: Sparse linear algebra libraries for supercomputers and GPUs
- 2010s: Graph processing libraries become popular, compilers for databases, and compilers for tensor algebra

Parallelism, locality, work efficiency still matters, but the key is choosing efficient data structures

Harry	Sally	George	Mary	Rita
CS	EE	CS	ME	CS

Sparse data structures in graphs, tensors, and relations encode coordinates in a sparse iteration space

Tensor (nonzeros)	Relation (rows)	Graph (edges)
(0,1)	(Harry,CS) (Sally,EE)	(V_1, V_5) (V_4, V_3)
(2,3) (0,5)	(George,CS)	(V ₅ ,V ₃)
(5,5) (7,5)	(Mary,ME) (Rita,CS)	(v_3, v_5) (v_3, v_1)

Values may be attached to these coordinates: e.g., nonzero values, edge attributes

Hierarchically compressed data structures (tries) reduce the number of values that need to be stored

Iteration over sparse iteration spaces imply coiteration over sparse data structures

Linear Algebra: A = B + C

Tensor Index Notation: $A_{ij} = B_{ij} + C_{ij}$

Iteration Space: $B_{ij} \cup C_{ij}$

Merged coiteration

Coordinate Space

$$a_i = b_i \, d_i \, c_i$$

Merged coiteration code

Intersection $b \cap c$

```
int pb = b_pos[0];
int pc = c_pos[0];
while (pb < b_pos[1] && pc < c_pos[1]) {
   int ib = b_crd[pb];
   int ic = c_crd[pc];
   int i = min(ib, ic);
   if (ib == i && ic == i) {
     a[i] = b[pb] * c[pc];
   }
   if (ib == i) pb++;
   if (ic == i) pc++;
}</pre>
```


Union $b \cup c$

```
int pb = b_pos[0];
int pc = c_pos[0];
while (pb < b_pos[1] && pc < c_pos[1]) {</pre>
  int ib = b_crd[pb];
  int ic = c_crd[pc];
  int i = min(ib, ic);
  if (ib == i && ic == i) {
    a[i] = b[pb] + c[pc];
  else if (ib == i) {
    a[i] = b[pb];
  else {
    a[i] = c[pc];
  if (ib == i) pb++;
  if (ic == i) pc++;
                                            b
                                                           \boldsymbol{\mathcal{C}}
while (pb < b_pos[1]) {</pre>
  int i = b_crd[pb];
  a[i] = b[pb++];
while (pc < c_pos[1]) {</pre>
  int i = c_crd[pc];
 a[i] = c[pc++];
```

Iterate-and-locate examples (intersection)

$$a = \sum_{i} b_{i} c_{i}$$


```
for (int pb = b_pos[0]; pb < b_pos[1]; pb ++) {
  int i = b_crd[pb];
  a += b[pb] * c[i];
}</pre>
```

Separation of Algorithm, Data Representation, and Schedule

Data independence separates algorithm from data layout and order of computation

- You want a logical (abstract) representation that exposes only characteristics of the data — not how the data is stored
- Tree models and network models require programmers to write programs to traverse indices
- If the indices change, the programs must change
- A flat abstract view—as coordinates—allows the system to change data representation without users changing their programs
- Underneath the hood, the system can impose hierarchies and networks

Tree models, to network models, to the relational model

A Relational Model of Data for Large Shared Data Banks. *Codd* (1970)

The Programmer as Navigator.

Bachman (1974)

What Goes Around Comes Around. Stonebraker and Hellerstein (2005)

Data structures in relational database management systems

- Row stores for efficient insertion
- Column stores for spatial locality during scans
- B-trees to efficiently support sorted data
- Hash maps for random access
- Tries for compression
- Spatial data structures for geo-spatial queries

But database management systems are still rewritten for each new major data structure