Lecture 6 - Sparse Programming Systems

Stanford CS343D (Fall 2021)
Fred Kjolstad

Lecture Overview

Terminology: Regular and Irregular

Fully Connected System

Regular System

Irregular System

Three main classes of irregular systems

Road Networks
Fractional Sparsity

Power Law Graphs

Terminology: Dense and Sparse

Dense loop iteration space


```
for (int i = 0; i < m; i++) {
    for (int j = 0; j< n; j++) { \(y[i]+=A[i * n+j] * x[j]\);
    }
}
```

Sparse loop iteration space


```
for (int i = 0; i < m; i++) {
    for (int pA = A2_pos[i]; pA < A_pos[i+1]; pA++) {
        int j = A_crd[pA]
        y[i] += A[pA] * x[j];
    }
}
```

$$
y=A x
$$

$$
y=A x
$$

Three sparse applications areas

Relations, graphs, and tensors share a lot of structure but are specialized for different purposes

Triangle counting on graphs, relations, and tensors

On graphs

On relations
On tensors
$\frac{1}{6} \operatorname{trace}\left(A^{3}\right)$.

Some important developments in compilers and programming languages for sparse compilers

- 1960s: Development of libraries for sparse linear algebra
- 1970s: Relational algebra and the first relational database management systems: System R and INGRES
- 1980s: SQL is developed and has commercial success
- 1990s: Matlab gets sparse matrices and some dense to sparse linear algebra compilers are developed
- 2000s: Sparse linear algebra libraries for supercomputers and GPUs
- 2010s: Graph processing libraries become popular, compilers for databases, and compilers for tensor algebra

Parallelism, locality, work efficiency still matters, but the key is choosing efficient data structures

Sparse data structures in graphs, tensors, and relations encode coordinates in a sparse iteration space
Tensor (nonzeros)
$(0,1)$
$(2,3) \quad(0,5)$
$(5,5) \quad(7,5)$

Relation (rows)	Graph (edges)
(Harry,CS) (Sally,EE)	$\left(\mathrm{v}_{1}, \mathrm{~V}_{5}\right) \quad\left(\mathrm{v}_{4}, \mathrm{~V}_{3}\right)$
(George,CS)	$\left(\mathrm{V}_{5}, \mathrm{~V}_{3}\right)$
(Rita,CS) (Mary,ME)	$\left(\mathrm{v}_{3}, \mathrm{v}_{5}\right) \quad\left(\mathrm{v}_{3}, \mathrm{v}_{1}\right)$

Values may be attached to these coordinates: e.g., nonzero values, edge attributes

Hierarchically compressed data structures (tries) reduce the number of values that need to be stored

Iteration over sparse iteration spaces imply coiteration over sparse data structures

Linear Algebra: $A=B+C$
Tensor Index Notation: $A_{i j}=B_{i j}+C_{i j}$
Iteration Space: $B_{i j} \cup C_{i j}$

union because $x+0=x$

Merged coiteration

Coordinate Space

$$
a_{i}=b_{i} \epsilon_{i} c_{i}
$$

Merged coiteration code

Intersection $b \cap c$

```
```

int pb = b_pos[0];

```
```

int pb = b_pos[0];
int pc = c_pos[0];
int pc = c_pos[0];
while (pb < b_pos[1] \&\& pc < c_pos[1]) {
while (pb < b_pos[1] \&\& pc < c_pos[1]) {
int ib = b_crd[pb];
int ib = b_crd[pb];
int ic = c_crd[pc];
int ic = c_crd[pc];
int ic = c_crd[pc];
int ic = c_crd[pc];
if (ib == i \&\& ic == i) {
if (ib == i \&\& ic == i) {
a[i] = b[pb] * c[pc];
a[i] = b[pb] * c[pc];
}
}
if (ib == i) pb++;
if (ib == i) pb++;
if (ic == i) pc++;

```
    if (ic == i) pc++;
```

}

```


\section*{Union \(b \cup c\)}
```

int pb = b_pos[0];
int pc = c_pos[0];
while (pb < b_pos[1] \&\& pc < c_pos[1]) {
int ib = b_crd[pb];
int ic = c_crd[pc];
int i = min(ib, ic);
if (ib == i \&\& ic == i) {
a[i] = b[pb] + c[pc];
}
else if (ib == i) {
a[i] = b[pb];
}
else {
a[i] = c[pc];
}
if (ib == i) pb++;
if (ic == i) pc++;
}
while (pb < b_pos[1]) {
int i = b_crd[pb];
a[i] = b[pb++];
}
while (pc < c_pos[1]) {
int i = c_crd[pc];
a[i] = c[pc++];
}

```

\section*{Iterate-and-locate examples (intersection)}
\[
a=\sum_{i} b_{i} c_{i}
\]

```

for (int pb = b_pos[0]; pb < b_pos[1]; pb ++) {
int i = b_crd[pb];
a += b[pb] * c[i];
}

```

\section*{Separation of Algorithm, Data Representation, and Schedule}


\section*{Data independence separates algorithm from data layout and order of computation}
- You want a logical (abstract) representation that exposes only characteristics of the data - not how the data is stored
- Tree models and network models require programmers to write programs to traverse indices
- If the indices change, the programs must change
- A flat abstract view-as coordinates-allows the system to change data representation without users changing their programs
- Underneath the hood, the system can impose hierarchies and networks

\section*{Tree models, to network models, to the relational model}

Tree model (1960s)
(e.g., IMS)


Programmer as navigator

A Relational Model of Data for Large
Shared Data Banks. Codd (1970)

\section*{Data structures in relational database management} systems
- Row stores for efficient insertion
- Column stores for spatial locality during scans
- B-trees to efficiently support sorted data
- Hash maps for random access
- Tries for compression
- Spatial data structures for geo-spatial queries

But database management systems are still rewritten for each new major data structure```

