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Terminology: Regular and Irregular

Fully Connected System Regular System Irregular System
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Three main classes of irregular systems

Road Networks Fractional Sparsity Power Law Graphs
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Terminology: Dense and Sparse

Dense loop iteration space

for (int i = 0; i < m; i++) {

  for (int j = 0; j < n; j++) {

    y[i] += A[i*n+j] * x[j];

  }

}

y = Ax

Sparse loop iteration space

  for (int i = 0; i < m; i++) {

   for (int pA = A2_pos[i]; pA < A_pos[i+1]; pA++) {

      int j = A_crd[pA];

      y[i] += A[pA] * x[j];

    }

  }

y = Ax
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Three sparse applications areas
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Figure 3-10: Eight sparse iteration graphs with index variable iteration domains computed from the iteration graph’s symbolic
expression for each index variable.

tension to the iteration space algebra where iteration over dimension
nodes are represented as forall expressions that are nested according
to the tree embedding. This extension gives the iteration graph ex-
pressions an operational semantics (iterate through dimensions in the
given order), whereas iteration space expressions have declarative se-
mantics (a point is in the iteration space if it is in the set described
by the expression). The inner expressions are syntactically the same
in the two algebras, but are in the iteration graph expressions reinter-
preted so that indexed operands describe paths and operators describe
how the coordinate tree levels should be combined.

Figure 3-10 provides eight examples of iteration graphs to help
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Names City Age
Peter Boston 54
Mary San Fransisco 35
Paul New York 23

Adam Seattle 84
Hilde Boston 19
Bob Chicago 76
Sam Portland 32

Angela Los Angeles 62

Tensors

Relations

Graphs

Nonzeros are a subset of the 
cartesian combination of sets

A relation is a subset of the 
cartesian combination of sets

Sparse Iteration Spaces

Graph edges are a subset of the 
cartesian combination of sets
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Relations, graphs, and tensors share a lot of structure but 
are specialized for different purposes
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Triangle counting on graphs, relations, and tensors
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same optimality guarantee was presented, called “Leapfrog
Triejoin” [39]. Remarkably this algorithm was already
implemented in a commercial database system before
its optimality guarantees were discovered. A key idea
in the algorithms is handling skew in a theoretically op-
timal way, and uses many of the same techniques that
database management systems have used for decades
heuristically [9, 40, 41]

A technical contribution of this survey is to describe
the algorithms from [29] and [39] and their analyses in
one unifying (and simplified) framework. In particular,
we make the observation that these join algorithms are
in fact special cases of a single join algorithm. This re-
sult is new and serves to explain the common link be-
tween these join algorithms. We also illustrate some un-
expected connections with geometry, which we believe
are interesting in their own right and may be the basis
for further theoretical development.

1. MUCH ADO ABOUT THE TRIANGLE
We begin with the triangle query

Q� “ RpA, Bq � S pB,Cq � T pA,Cq.

The above query is the simplest cyclic query and is rich
enough to illustrate most of the ideas in the new join al-
gorithms.2 We first describe the traditional way to eval-
uate this query and how skew impacts this query. We
then develop two closely related algorithmic ideas al-
lowing us to mitigate the impact of skew in these ex-
amples; they are the key ideas behind the recent join
processing algorithms.

1.1 Why traditional join plans are suboptimal
The textbook way to evaluate any join query, includ-

ing Q�, is to determine the best pair-wise join plan [32,
Ch. 15]. Figure 1 illustrates three plans that a conven-
tional RDBMS would use for this query. For exam-
ple, the first plan is to compute the intermediate join
P “ R � T and then compute P � S as the final output.

�

S�

TR

�

T�

SR

�

R�

TS

Figure 1: The three pair-wise join plans for Q�.

2This query can be used to list all triangles in a given graph
G “ pV, Eq, if we set R, S and T to consist of all pairs pu, vq
and pv, uq for which uv is an edge. Due to symmetry, each
triangle in G will be listed 6 times in the join.

We next construct a family of instances for which any
of the above three join plans must run in time�pN2q be-
cause the intermediate relation P is too large. Let m � 1
be a positive integer. The instance family is illustrated in
Figure 2, where the domains of the attributes A, B and C
are {a0, a1, . . . , am}, {b0, b1, . . . , bm}, and {c0, c1, . . . , cm}
respectively. In Figure 2, the unfilled circles denote the
values a0, b0 and c0 respectively while the black circles
denote the rest of the values.

For this instance each relation has N “ 2m ` 1 tu-
ples and |Q�| “ 3m ` 1; however, any pair-wise join
has size m2 ` m. Thus, for large m, any of the three
join plans will take �pN2q time. In fact, it can be shown
that even if we allow projections in addition to joins, the
�pN2q bound still holds. (See Lemma 3.2.) By con-
trast, the two algorithms shown in the next section run
in time OpNq, which is optimal because the output itself
has �pNq tuples!

1.2 Algorithm 1: The Power of Two Choices
Inspecting the bad example above, one can see a root

cause for the large intermediate relation: a0 has “high
degree" or in the terminology to follow it is heavy. In
other words, it is an example of skew. To cope with
skew, we shall take a strategy often employed in database
systems: we deal with nodes of high and low skew us-
ing di�erent join techniques [9, 41]. The first goal then
is to understand when a value has high skew. To shorten
notations, for each ai define

Q�rais :“ �B,Cp�A“ai pQ�qq.
We will call ai heavy if |�A“ai pR � T q| � |Q�rais|. In
other words, the value ai is heavy if its contribution to
the size of intermediate relation R � T is greater than
its contribution to the size of the output. Since

|�A“ai pR � T q| “ |�A“ai R| ¨ |�A“ai T |,
we can easily compute the left hand side of the above
inequality from an appropriate index of the input rela-
tions. Of course, we do not know |Q�rais| until after
we have computed Q�. However, note that we always
have Q�rais � S . Thus, we will use |S | as a proxy for
|Q�rais|. The two choices come from the following two
ways of computing Q�rais:

(i) Compute �A“ai pRq � �A“ai pT q and filter the re-
sults by probing against S or

(ii) Consider each tuple in pb, cq P S and check if
pai, bq P R and pai, cq P T .

We pick option (i) when ai is light (low skew) and
pick option (ii) when ai is heavy (high skew).

Example 1. Let us work through the motivating ex-
ample from Figure 2. When we compute Q�ra0s, we

3SIGMOD Record, December 2013 (Vol. 42, No. 4) 7

On tensors

where Z denotes an inner (intersecting) join, A, B, andC are sets, and
Q , R, S , andT are relations. Moreover, Godsil and Royle [57, Corollary
8.1.3] show how to count triangles using linear algebra operations, by
dividing by 6 the trace of the cube of the adjacency matrix of a graph50: 50 The intuition is that eachmatrix mul-

tiplication does one step of a breadth-
�rst search from each vertex; hence,
in two steps, you get back to yourself
through triangles. The number of trian-
gles each vertex� takes part in is half of
A
3
�� because one can traverse each tri-

angle in two directions from each ver-
tex. By counting the number of tri-
angles of each vertex, we obtain three
times the number of total triangles be-
cause three vertices partake in each tri-
angle. Thus, the number of triangles is
1
3
1
2 trace(A3) = 1

6 trace(A3).

1
6
trace(A3).

Finally, Azad et al. [10] show that triangle counting can be further
optimized by computing and then closing wedges. They �rst direct
the graph by multiplying the lower and upper triangular parts of the
adjacency matrix. Then, they element-wise multiply the result by the
entire adjacency matrix:

A � (LU ),
where � is an element-wise multiplication, L is the lower triangular
part of A, andU is its upper triangular part.

Because of the underlying similarities between their operations
and because each abstraction operates on sets and their relationships, I
believe sparse iteration theory can be generalized to support the union
of sparse array and tensor operations, relational algebra, and many
graph operations. This approach would make it possible to not only
individually compile the operations in each abstraction but to also
compile algorithms that transition between them.51 The resulting uni- 51 The Simit programming lan-

guage [77] that I worked on during
graduate school, but which is not
covered in this dissertation, is a �rst
step in this direction. It lets users
write programs that transition between
graph and linear algebra abstractions.
It demonstrated we can get perfor-
mance, productivity, and portability
across abstractions by introducing new
programming language constructs to
express these transitions.

�ed sparse iteration theory would thus provide us with a compiler ap-
proach for sparse computation in general.

130
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Some important developments in compilers and 
programming languages for sparse compilers

• 1960s: Development of libraries for sparse linear algebra


• 1970s: Relational algebra and the first relational  database 
management systems: System R and INGRES


• 1980s: SQL is developed and has commercial success


• 1990s: Matlab gets sparse matrices and some dense to sparse linear 
algebra compilers are developed


• 2000s: Sparse linear algebra libraries for supercomputers and GPUs


• 2010s: Graph processing libraries become popular, compilers for 
databases, and compilers for tensor algebra
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Parallelism, locality, work efficiency still matters,

but the key is choosing efficient data structures

work 
efficiency locality

parallelism

0 2 3 20 1 2 3

0 0 1

0 2

30 40 50 7010 80 20 60

0 3 5 8

0 1 3

0 2

Harry Sally George Mary Rita

CS EE CS ME CS

data structures

work 
efficiency locality

parallelism

Harry CS

Sally EE

George CS

Mary ME

Rita CS
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Sparse data structures in graphs, tensors, and relations

encode coordinates in a sparse iteration space

Values may be attached to these coordinates: e.g., nonzero values, edge attributes

Tensor (nonzeros)

(0,1)

(2,3) (0,5)

(5,5) (7,5) (Rita,CS)

Relation (rows)

(Harry,CS)
(Sally,EE)

(George,CS)
(Mary,ME)

Graph (edges)

(v1,v5)
(v4,v3)

(v5,v3)

(v3,v1)
(v3,v5)
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Hierarchically compressed data structures (tries)

reduce the number of values that need to be stored

Compressed Sparse Rows (CSR)

A B C D E F
0 1 2 3 4 5 6 7 8 9 10 11

row(3) = ???
col(3) = ???

0 1 2 3 4 5

F
C D E

A B
0 1 2 3

0

1

2

0 2 5 60 0 1 1 1 2

0 2 1 2 3 3

rows

cols

pos

Coordinate
0 1 2 3

Duplicates
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Iteration over sparse iteration spaces imply coiteration 
over sparse data structures

0 2 3

30 40 50 7010 80 20 60

0 3 5

20 1 2 3

8pos

cols

B

vals

0 2 3

0 1 3

C

2 91

pos

cols

vals

A = B + CLinear Algebra:

Aij = Bij + CijTensor Index Notation:

j

i ∪

union because  x + 0 = x

coiterate

Bij ∪ CijIteration Space:
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Merged coiteration

3

b c

Coordinate Space
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x ⋅ 0 = 0

ai = bi + ci



15

Merged coiteration code

Intersection b ∩ c
int pb = b_pos[0];

int pc = c_pos[0];

while (pb < b_pos[1] && pc < c_pos[1]) {

  int ib = b_crd[pb];

  int ic = c_crd[pc];

  int i = min(ib, ic);

  if (ib == i && ic == i) {

    a[i] = b[pb] * c[pc];

  }

  if (ib == i) pb++;

  if (ic == i) pc++;

}

int pb = b_pos[0];

int pc = c_pos[0];

while (pb < b_pos[1] && pc < c_pos[1]) {

  int ib = b_crd[pb];

  int ic = c_crd[pc];

  int i = min(ib, ic);

  if (ib == i && ic == i) {

    a[i] = b[pb] + c[pc];

  }

  else if (ib == i) {

    a[i] = b[pb];

  }

  else {

    a[i] = c[pc];

  }

  if (ib == i) pb++;

  if (ic == i) pc++;

}


while (pb < b_pos[1]) {

  int i = b_crd[pb];

  a[i] = b[pb++];

}


while (pc < c_pos[1]) {

  int i = c_crd[pc];

  a[i] = c[pc++];

}

Union b ∪ c

b c b c
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Iterate-and-locate examples (intersection)

a = ∑
i

bici

for (int pb = b_pos[0]; pb < b_pos[1]; pb ++) {

  int i = b_crd[pb];

  a += b[pb] * c[i];

}

cb

iterate over b locate from c
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Separation of Algorithm, Data Representation, and Schedule


Algorithm

Language

Data Representation 
Language

Scheduling

Language

Compiler

CPUs

DSAs
Most of HW retargeting is about changing


schedules and data representations

GPUs
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Data independence separates algorithm from data layout 
and order of computation

A Relational Model of Data for Large 
Shared Data Banks. E. F. Codd  (1970)

• You want a logical (abstract) representation that exposes only 
characteristics of the data — not how the data is stored


• Tree models and network models require programmers to write 
programs to traverse indices


• If the indices change, the programs must change


• A flat abstract view—as coordinates—allows the system to change data 
representation without users changing their programs


• Underneath the hood, the system can impose hierarchies and networks
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Tree models, to network models, to the relational model

Tree model (1960s)

(e.g., IMS)

Network model (1970s)

(e.g., CODASYL)

What Goes Around Comes Around. 
Stonebraker and Hellerstein (2005)

The Programmer as Navigator. 

Bachman  (1974)

A Relational Model of Data for Large 
Shared Data Banks. Codd  (1970)

Programmer as navigator

Relational model

(Harry,3245,CS)

(Sally,7264,EE)

(George,1379,EE)

(Mary,1733,ME)

(Rita,2357,CS)

(CS,George)

(EE,Mary)

⋈
(Harry,3245,CS,George)

(Sally,7264,EE,Mary)

(George,1379,CS,George)

(Rita,2357,CS,George)

Programmer controls streams
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Data structures in relational database management 
systems

But database management systems are still rewritten for each new major data structure

• Row stores for efficient insertion


• Column stores for spatial locality during scans


• B-trees to efficiently support sorted data


• Hash maps for random access


• Tries for compression


• Spatial data structures for geo-spatial queries


