Notation ## Pat Hanrahan # "Semantics, Not Syntax" # DSLs Syntax and Semantics Functions and sets (Semantics) **Concrete syntax (notation)** Abstract syntax tree (Syntax) Evaluator (Syntax -> Semantics) Laws ``` data Expr a = -Functor Add (Expr a) (Expr a) - Mul (Expr a) (Expr a) type Syntax = Expr Integer type Semantics = Integer eval :: Syntax -> Semantics eval (Add e1 e2) = (eval e1) + (eval e2) eval (Mul e1 e2) = (eval e1) * (eval e2) eval (Con c) = c // universal algebra / algebraic data type // see <u>DSLsofMath</u> ``` ``` Laws ``` ``` open import Relation.Binary.PropositionalEquality using (_≡_) open import Data.Nat using (\mathbb{N}; _+_, _*_) open import Data.Nat.Properties using (+-assoc; +-identity¹; +-identity^r; +-comm; *-assoc; *-identity¹; *-identity^r; *-distrib^r-+) record IsSemiRing {A : Set} (+ : A \rightarrow A \rightarrow A) (e : A) (_*_ : A \rightarrow A \rightarrow A) (f : A) : Set where field +-assoc : \forall (x y z : A) \rightarrow (x + y) + z \equiv x + (y + z) +-identity¹: \forall (x : A) \rightarrow e + x \equiv x +-identity^r: \forall (x : A) \rightarrow x + e \equiv x +-comm : \forall (x y : A) \rightarrow x + y \equiv y + x *-assoc : \forall (x \ y \ z : A) \to (x \ * \ y) \ * \ z \equiv x \ * \ (y \ * \ z) *-identity¹ : \forall (x : A) \rightarrow f * x \equiv x *-identity Y : Y (x : A) \rightarrow x * f \equiv x *-distrib-+ : \forall x y z \rightarrow (x * (y + z)) \equiv ((x * y) + (x * z)) ``` #### Definition: vector space A *vector space* is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold: commutativity additive identity additive inverse multiplicative identity distributive properties - u + w = w + u for all $u, w \in V$; - (u + v) + w = u + (v + w) and (ab)u = a(bu) for all $u, v, w \in V$ and all $a, b \in \mathbf{F}$; - there exists $0 \in V$ such that u + 0 = u for all $u \in V$; - for every $u \in V$, there exists $w \in V$ such that u + w = 0; - 1u = u for all $u \in V$; - a(u+w) = au + aw and (a+b)u = au + bu for all $a,b \in \mathbf{F}$ and all $u,w \in V$. Two vectors are equal if they are isomorphic via a linear transformation. That is, the coordinate system is arbitrary Dual space with inner product A tensor is formed from two vector spaces V and W using the tensor product $V \otimes W$. With the following laws (bilinearity) $$s(v \otimes w) = (sv) \otimes w = v \otimes (sw)$$ $(u \otimes w) + (v \otimes w) = (u+v) \otimes w$ Can form multilinear products U ⊗ V ⊗ W Covariant and Contravariant vectors # THE FOUNDATION OF THE GENERAL THEORY OF RELATIVITY #### By A. EINSTEIN "Contraction" of a Mixed Tensor.—From any mixed tensor we may form a tensor whose rank is less by two, by equating an index of covariant with one of contravariant character, and summing with respect to this index ("contraction"). Thus, for example, from the mixed tensor of the fourth rank $A_{\mu\nu}^{\sigma\tau}$, we obtain the mixed tensor of the second rank, $$A^{\tau}_{\nu} = A^{\mu\tau}_{\mu\nu} \quad (= \sum_{\mu} A^{\mu\tau}_{\mu\nu}),$$ and from this, by a second contraction, the tensor of zero rank, $$A = A^{\nu}_{\nu} = A^{\mu\nu}_{\mu\nu}.$$ The theory which is presented in the following pages conceivably constitutes the farthest-reaching generalization of a theory which, today, is generally called the "theory of relativity"; I will call the latter one—in order to distinguish it from the first named—the "special theory of relativity," which I assume to be known. The generalization of the theory of relativity has been facilitated considerably by Minkowski, a mathematician who was the first one to recognize the formal equivalence of space coordinates and the time coordinate, and utilized this in the construction of the theory. The mathematical tools that are necessary for general relativity were readily available in the "absolute differential calculus," which is based upon the research on non-Euclidean manifolds by Gauss, Riemann, and Christoffel, and which has been systematized by Ricci and Levi-Civita and has already been applied to problems of theoretical physics. In section B of the present paper I developed all the necessary mathematical tools-which cannot be assumed to be known to every physicist—and I tried to do it in as simple and transparent a manner as possible, so that a special study of the mathematical literature is not required for the understanding of the present paper. Finally, I want to acknowledge gratefully my friend, the mathematician Grossmann, whose help not only saved me the effort of studying the pertinent mathematical literature, but who also helped me in my search for the field equations of gravitation. [1] [2] [3] [4] [5] [6] #### **Penrose Diagrams** #### **Applications of Negative Dimensional Tensors** #### ROGER PENROSE Birkbeck College, University of London, England I wish to describe a theory of "abstract tensor systems" (abbreviated ATS) and indicate some applications. Unfortunately I shall only be able to give a very brief outline of the general theory here.† #### **Penrose Diagrams** $$A_{ij} = \sum_{k} B_{ijk} c_k$$ # Concrete index notation specifies order of computations and location of intermediate values $$A_{ij} = B_{ij} + C_{ij} \qquad \qquad \longrightarrow \qquad \forall_i \forall_j A_{ij} = B_{ij} + C_{ij}$$ $$\alpha = \sum_{i} b_{i} c_{i} \qquad \qquad \qquad \forall_{i} \alpha + = b_{i} c_{i}$$ $$a_i = \sum_j B_{ij} c_j \qquad \qquad \longrightarrow \qquad \forall_i \forall_j \ a_i = t \ \mathbf{where} \ t + = B_{ij} c_j$$ # Representations # Set Representations (Type Isomorphism) | Representation | Union | Find | | | |--------------------------|--------------------|-----------------|--|--| | Cons | O(n ²) | O(n) | | | | Sorted Cons | O(n) | O(log(n)) | | | | Hash | O(n ²) | O (1) | | | | Bit Vector | O(n) | O (1) | | | | Binary Tree | O(log(n)) | O(n log(n)) | | | | Union-Find Forest | O (a(n)) | O (a(n)) | | | An Automatic Technique for Selection of Data Representations in SETL Programs, Schonberg, Schwarz, Sharir, 1981 ### Herb Simon Nobel Prize in Economics (1977) "for his pioneering research into the decision-making process within economic organizations" Turing Award (1975) "basic contributions to artificial intelligence, the psychology of human cognition, and list processing" Goal: Pick three numbers that sum to 15 1 2 3 4 5 6 7 8 9 A: **B**: Goal: Pick three numbers that sum to 15 6 7 A: 8 4 5 B: 2 3 ? Goal: Pick three numbers that sum to 15 1 2 3 4 5 6 7 8 9 A: 8 4 5 B: 2 3 ? Goal: Pick three numbers that sum to 15 1 2 3 4 5 6 7 **A:** 8 **B**: Goal: Pick three numbers that sum to 15 1 3 4 5 6 7 9 **A:** 8 B: 2 Goal: Pick three numbers that sum to 15 1 3 5 6 7 A: 8 4 Goal: Pick three numbers that sum to 15 5 6 7 A: 8 4 B: 2 3 Goal: Pick three numbers that sum to 15 6 7 A: 8 4 5 B: 2 3 ? # Problem Isomorphs ### **Problem Isomorph** Magic Square: All rows, columns, diagonals sum to 15 | 4 | 3 | 8 | |---|---|---| | 9 | 5 | 1 | | 2 | 7 | 6 | | 4 | 3 | 8 | |---|---|---| | 9 | 5 | 1 | | 2 | 7 | 6 | | 4 | 3 | 8 | |---|---|---| | 9 | 5 | 1 | | 2 | 7 | 6 | "Why is a Picture (Sometimes) Worth 10,000 Words" Larkin and Simon, Cognitive Science, 1987 ## Why? #### Reduce memory load - Working memory is limited - Store information in the diagram #### Reduce search time - Pre-attentive (constant-time) search process - Spatially-indexed patterns store the "facts" #### Allow perceptual inference Map inference to pattern finding ## The Representation Effect Although two representations may be equivalent, one is often much "better" for a given problem #### "Better" means - Faster - Fewer errors - Better comprehension - ? | Summary of Financial Performance | | | | | | | | | | |----------------------------------|-------------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------| | | | Central | | East | | South | | West | | | | | Total Sales | Total Profit | | Coffee | Amaretto | \$14,011 | 5,105 | \$2,993 | 1,009 | | | \$9,265 | -1,225 | | | Columbian | \$28,913 | 8,528 | \$47,386 | 27,253 | \$21,664 | 8,767 | \$30,357 | 11,253 | | | Decaf Irish Cream | \$26,155 | 9,632 | \$6,261 | 2,727 | \$11,592 | 2,933 | \$18,235 | -1,305 | | Espresso | Caffe Latte | | | | | \$15,442 | 3,872 | \$20,458 | 7,502 | | | Caffe Mocha | \$35,218 | 14,640 | \$16,646 | -6,230 | \$14,163 | 5,201 | \$18,876 | 4,064 | | | DecafEspresso | \$24,485 | 8,860 | \$7,722 | 2,410 | \$15,384 | 5,930 | \$30,578 | 12,302 | | | RegularEspresso | | | \$24,036 | 10,062 | | | | | | Herbal Tea | Chamomile | \$36,570 | 14,434 | \$2,194 | 765 | \$11,186 | 3,180 | \$25,632 | 8,852 | | | Lemon | \$21,978 | 6,251 | \$27,176 | 7,901 | \$14,497 | 2,593 | \$32,274 | 13,120 | | | Mint | \$9,337 | 4,069 | \$11,992 | -2,242 | | | \$14,380 | 4,330 | | Tea | Darjeeling | \$30,289 | 10,772 | \$14,096 | 6,497 | | | \$28,769 | 11,780 | | | Earl Grey | \$32,881 | 10,331 | \$6,505 | 3,405 | | | \$27,387 | 10,425 | | | Green Tea | \$5,211 | 1,227 | \$11,571 | 5,654 | | | \$16,063 | -7,109 | How much mint tea was sold in the west? | Summary of Financial Performance | | | | | | | | | | | |----------------------------------|-------------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------|--| | | | Cent | Central East | | t South | | uth | West | | | | | | Total Sales | Total Profit | | | Coffee | Amaretto | \$14,011 | 5,105 | \$2,993 | 1,009 | | | \$9,265 | -1,225 | | | | Columbian | \$28,913 | 8,528 | \$47,386 | 27,253 | \$21,664 | 8,767 | \$30,357 | 11,253 | | | | Decaf Irish Cream | \$26,155 | 9,632 | \$6,261 | 2,727 | \$11,592 | 2,933 | \$18,235 | -1,305 | | | Espresso | Caffe Latte | | | | | \$15,442 | 3,872 | \$20,458 | 7,502 | | | | Caffe Mocha | \$35,218 | 14,640 | \$16,646 | -6,230 | \$14,163 | 5,201 | \$18,876 | 4,064 | | | | DecafEspresso | \$24,485 | 8,860 | \$7,722 | 2,410 | \$15,384 | 5,930 | \$30,578 | 12,302 | | | | RegularEspresso | | | \$24,036 | 10,062 | | | | | | | Herbal Tea | Chamomile | \$36,570 | 14,434 | \$2,194 | 765 | \$11,186 | 3,180 | \$25,632 | 8,852 | | | | Lemon | \$21,978 | 6,251 | \$27,176 | 7,901 | \$14,497 | 2,593 | \$32,274 | 13,120 | | | | Mint | \$9,337 | 4,069 | \$11,992 | -2,242 | | | \$14,380 | 4,330 | | | Tea | Darjeeling | \$30,289 | 10,772 | \$14,096 | 6,497 | | | \$28,769 | 11,780 | | | | Earl Grey | \$32,881 | 10,331 | \$6,505 | 3,405 | | | \$27,387 | 10,425 | | | | Green Tea | \$5,211 | 1,227 | \$11,571 | 5,654 | | | \$16,063 | -7,109 | | What product in what region sold the most? # "Number Representations" Zhang and Norman #### **Number Representations** Counting - Tallying Adding – Roman numerals $$XXIII + XII = XXXXIIIII = XXXV$$ Multiplication – Arabic number systems ### Long-Hand Multiplication From "Introduction to Information Visualization," Card, Schneiderman, Mackinlay Zhang and Norman, The Representations of Numbers, Cognition, 57, 271-295, 1996 #### **Distributed Cognition** External (E) vs. Internal (I) process | | | Roman | Arabic | |-----------|-----------------------|-------|--------| | 1. | Separate power & base | 1 | E | | 2. | Get base value | E | 1 | | 3. | Multiply base values | 1 | 1 | | 4. | Get power values | 1 | E | | 5. | Add power values | 1 | E | | 6. | Combine base & power | 1 | E | | 7. | Add results | 1 | E | Arabic more efficient than Roman Notation as a Tool of Thought Kenneth Iverson #### Notation as a Tool for Thought "The thesis of the present paper is that the advantages of executability and universality found in programming languages can be effectively combined, in a single coherent language, with the advantages offered by mathematical notation" K. Iverson Unambiguous executable mathematics #### Arithmetic and Algebra in APL (k) ``` > k = 5 > til k 0 1 2 3 4 > 1 + 2 * til k 1 3 5 7 9 // 1 + 3 + 5 + 7 + 9 > +/ 1+2*til k 25 > k*k 25 ``` #### **Program Transformations as Proofs** ``` // sum of k odd numbers +/(1 + 2 * til k) == // definition of multiplication +/(1 + (til k) + (til k)) == // addition is commutative and associative +/ (1 + (til k) + (reverse til k)) == // 0 1 2 + 2 1 0 = (0+2) + (1+1) + (2+0) = 2+2+2 // +/ k # k-1 +/(1 + k \# (k-1)) == // scalar + vector causes scalar to be repeated k times +/ k#k == // definition of multiplication as repeated addition: k*k = +/ k#k // e.g. 3*3 = +/333 k*k ``` K. Iverson, Arithmetic, 1991 ## Visual Proofs Algebra 1+3+5+7+9=5² ``` data \mathbb{N} : Set where zero : № suc : \mathbb{N} \to \mathbb{N} + : \mathbb{N} \to \mathbb{N} \to \mathbb{N} zero + n = n suc m + n = suc (m + n) +-identity^r : \forall (m : \mathbb{N}) → m + zero \equiv m +-identity^r zero = begin zero + zero ≡⟨⟩ zero +-identity^r (suc m) = begin suc m + zero ≡⟨⟩ suc (m + zero) ≡(cong suc (+-identity m)) suc m ``` ## Characteristics of Notation - 1 Ease of expression (natural) - 2 Suggestivity (expose patterns) - 3 Subordinate detail (abstract) - 4 Economy (concise) - 5 Formal (proofs) Florian Cajori (1859-1930) History of Mathematics University of California, Berkeley ## Mathematica Rich character and symbol set (2500) Multiple versions of a symbol to resolve ambiquity $\blacksquare i$ double struck i = sqrt(-1) Two-dimensional (over, subscript, ...) StandardForm, TraditionalForm, ... ■ 100 heuristics to go from traditional to standard Input macros (map ascii to symbol, ->) Mathematical Notation: Past and Future, Stephen Wolfram, 2000 # The Incredible Convenience of Mathematica Image Processing # **Theodore Gray** # **ChatGPT** # **Supporting Notation** ``` // Lisp // Uniform syntax - s expressions (cond ((= n 10) (= m 1)) ((> n 10) (= m 2) (= n (* n m))) ((< n 10) (= n 0))) // Symbols are characters delimited by // spaces and punctuation // Macros allow special forms (e.g. cond) // Minimal notation! ``` ``` // Smalltalk employee name first // unary operators / methods // parsed left to right // left associative // = employee.name.first // binary operators // left associative, no precedence 1 + 2 * 3 = (1 + 2) * 3 // unary ops have precedence over binary 1 + 4 sqrt = 1 + (4 sqrt) ``` ``` // APL (k) +/1 + 2 * til k // monadic (til) and dyadic (+ *) // // right associative // functions have same precedence // operators (higher-order functions) // operators > functions +/(1 + (2 * (til k))) ``` ``` // Haskell // sections (+) 1 2 = 1 + 2 // currying, left associative (((+) 1) 2) // precedence and associativity infixl 6 + ``` - From the Prelude. Unicode module - Values - not = (¬) - **■** (&&) = (∧) - (II) = (v) - **■** (==) = (≡) - (/=) = (≠) = (≢) - **■** <= = ≤ = ≯ - **■** >= = ≥ = ≮ - pi = π - (/) = (÷) - **■** (*) = (·) - (.) = (°) - **(++)** = **(+)** - elem = (∈) - notElem = (∉) - undefined = (\bot) - Types - Integer = Z - Rational = Q # Unicode Symbols ``` // Agda // define operators with blanks for arguments _+_ x y = _+ _x _y _x _y _y // precedence and associativity infixl 6 + // statement forms if then else x y z = if x then y else // unicode characters in names // identifiers separated with spaces ``` # Semantics And Syntax