Lecture 4 - Collection-Oriented Languages

Stanford CS343D (Winter 2023)
Fred Kjolstad

> Lecture $3 \sqrt{ }$
> Building DSLs

Languages are tools for thought

"By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on the more advanced problems, and in effect increases the mental power of the race."

- Alfred N. Whitehead

Collection-Oriented languages are an important subclass of DSLs as discussed in this course

> Economy of scale in notation and execution

$$
\begin{gathered}
C=A \bowtie B \\
c=A b \\
{[\mathrm{x} * 2 \text { for } \mathrm{x} \text { in my_list }]}
\end{gathered}
$$

How many operations?

Collection-oriented languages are relatively general

We need collections for performance due to Amdahl's law

But many applications are data-rich

Avoiding the von Neumann model of languages

Imperative Form
c : $=0$
for i := 1 step 1 until n do
$c:=c+a[i] x b[i]$

Functional Form

$$
\begin{aligned}
& \qquad \mathrm{c}=\operatorname{sum}(\mathrm{a}[0: \mathrm{n}] * \mathrm{~b}[0: \mathrm{n}]) \\
& \text { produces a vector }
\end{aligned}
$$

transfers one scalar value to memory:
von Neumann bottleneck in software
the assignment transfers one value to memory

Collection-oriented operations let us operate on collections as a whole

- A record-at-a-time user interface forces the programmer to do manual query optimization, and this is often hard.
- Set-a-time languages are good, regardless of the data model, since they offer much improved physical data independence.
- The programming language community has long recognized that aggregate data structures and general operations on them give great flexibility to programmers and language implementors.

Collection-Oriented Languages

Lists

Lisp [1958] | Sets |
| :---: |
| SETL |

Features of collections

- Ordering: unordered, sequence, or grid-ordered?
- Regularity: Can the collection represent irregularity/sparsity?
- Nesting: nested or flat collections?
- Random-access: can individual elements be accessed?

The APL Programming Language

$\mathrm{n} \leftarrow 4567 \quad$ i.e., mkArray
n+4
891011
n+l4
57911
22
$+/(3+\imath 4)$
22

```
+/n
```

$+/(3+14)$
22
element-wise addition
(14 makes the array [1,2,3,4])
4 is broadcast across each n
$\sum_{i=0}^{n} n_{i}$
$\sum_{i=1}^{4}(i+3)$

Array Programming with NumPy

a Data structure

data		0	1	2	3	4	5	6	7		9	10	11
data type	8 -byte integer $(4,3)$ 8 bytes per element $3 \times 8=24$ bytes to jump one row down												
shape													
strides													

d Vectorization

0	1			
3	4			
6	7			
9	10	$+$	1	1
:---:	:---:			
1	1			
1	1			
1	1			
10	11			

b Indexing (view)

C Indexing (copy)

$$
\begin{aligned}
& \left.x[1,2] \rightarrow 5 \text { with scalars } x[x>9] \rightarrow \begin{array}{|l|l|l|}
10 & 11 \\
\text { with masks } \\
x\left[\begin{array}{|l|l|l|l}
\hline 0 & 1 & 1 & 2
\end{array}\right] \rightarrow[x[0,1], x[1,2]
\end{array}\right] \rightarrow \begin{array}{|l|l|}
\hline 1 & 5 \\
\text { with arrays }
\end{array} \\
& x\left[\begin{array}{|l|l|l|}
\hline 1 & 1 & 0 \\
\hline 2 &
\end{array}\right] \rightarrow x\left[\left.\begin{array}{|l|l|}
\hline 1 & 1 \\
\hline 2 & 2 \\
\hline 1 & 1
\end{array} \right\rvert\, \begin{array}{|l|l}
\hline 1 & 0 \\
\hline
\end{array}\right] \rightarrow \begin{array}{|l|l|}
\hline 4 & 3 \\
\hline 7 & 6 \\
\text { with arrays } \\
\text { with broadcasting }
\end{array}
\end{aligned}
$$

e Broadcasting

f Reduction

The SETL Language

Sets
Tuples
Functions
$\bigcirc \bigcirc \bigcirc$
$(\bigcirc, \bigcirc, \bigcirc)$

SETL Set Former Notation

Notation

$$
\begin{array}{cc}
\text { Notation } & \text { Example } \\
\{x \in s \mid C(x)\} & \{x \in\{1,5,10,32\} \mid x \mathbf{l t} 10\} \rightarrow\{1,5\} \\
\{e(x), x \in s \mid C(x)\} & \left\{i^{*} i, i \in\{1,3,5\}\right\} \rightarrow\{1,9,25\} \\
\{e(x), \min \leq i \leq \max \mid C(i)\} & \left\{i^{*} 2-1,1 \leq i \leq 5\right\} \rightarrow\{1,3,5,7,9\} \\
{[\mathrm{op}: x \in s \mid C(x)] e(x)} & {[+: x \in\{1,2,3\}](x * x) \rightarrow 14} \\
\forall x \in s \mid C(x) & \forall x \in 1,2,4 \mid(x / / 2) \mathbf{e q} 1 \rightarrow \mathbf{f} \\
{\left[+: x \in s_{1}, y \in s_{2}\right]\{<x, y>\}} & {[+: x \in\{1,2\}, y \in\{a, b\}]\{<x, y>\} \rightarrow} \\
& \{<1, a>,<1, b>,<2, a>,<2, b>\}
\end{array}
$$

SETL Table Functions

$$
\begin{aligned}
& f=\{\langle 1,1\rangle,\langle 2,4\rangle,\langle 3,9\rangle\} \\
& f(2) \rightarrow 4 \\
& f+\{\langle 2,5\rangle\} \rightarrow\{<1,1>,<2,5>,<3,9>\}
\end{aligned}
$$

$$
\begin{aligned}
\text { left } & =\{<A, B\rangle,<B, D>\} \\
\text { right } & =\{\langle A, C>,<B, E\rangle\}
\end{aligned}
$$

Relational Algebra

employees		
name	id	department
Harry	3245	CS
Sally	7264	EE
George	1379	CS
Mary	1733	ME
Rita	2357	CS

departments

department	manager
CS	George
EE	Mary

Name	Department
Harry	CS
Sally	EE
George	CS
Mary	ME
Rita	CS
Name	
Harry	3245
George	1379
Rita	2357

name	id	department	manager
Harry	3245	CS	George
Sally	7264	EE	Mary
George	1379	CS	George
Rita	2357	CS	George

Graph operations

Simultaneous operations on different parts of the graph

Relations, Graphs, and Algebra: No glove fits all

It is critical to be able to compose languages and abstractions

Tensors

Example: Relations and Tensors

name	department	manager	Tensor Assembly
Harry	CS	George	
Sally	EE	Mary	
George	CS	George	
Rita	CS	George	

Example: Relations and Graphs

name	department			name1	name2
Harry	CS		Harry	Sally	
Sally	EE	M	Sally	Harry	
George	CS		George	Rita	
Rita	CS		Rita	George	
			Sally	Rita	
			Rita	Sally	

Example: Graphs and Tensors (Simit)

Statics Tetrahedral Neo-Hookean FEM Simulation

Statics Triangular Neo-Hookean FEM Simulation

element Vertex	
$x \quad:$ vector[3](float);	\% position
v $:$ vector[3](float);	\% velocity
fe : vector[3](float);	\% external force
end	

Statics Triangular Neo-Hookean FEM Simulation

Statics Triangular Neo-Hookean FEM Simulation

\% graph vertices and triangle hyperedges
extern verts : set\{vertex\};

Statics Triangular Neo-Hookean FEM Simulation

Statics Triangular Neo-Hookean FEM Simulation


```
element Vertex
* : vector[3][float % newton's method
end
element Triangle
    u : float
    l : float;
    W : float;
end:matrix[3,3](flo // assemble force vector
% graph vertices and
extern verts
extern triangles : se
% compute triangle ar
func compute_area(inout t : Triangle, v : (Vertex*3))
    t.B = compute_B(v);
    t.B = compute_B(v);
end

\section*{Statics Triangular Neo-Hookean FEM Simulation}


Statics Triangular Neo-Hookean FEM Simulation


\section*{Statics Triangular Neo-Hookean FEM Simulation}

```

element Vertex
x : vector[3](float); % position
v : vector[3](float); % velocity
fe : vector[3](float); % external force
end
element Triangle
u : float; % shear modulus
l : float; % lame's first parameter
W : float; % volume
B : matrix[3,3](float); % strain-displacement
end
% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);
% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
t.B = compute_B(v);
t.W = det(B)/ 2.0;
end
export func init()
apply compute_area to triangles;
end
aply compute_area to triangles

```
```

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
-> K : matrix[verts,verts](matrix%5B3,3%5D(float))
for i in 0:3
for j in 0:3
K(v(i),v(j)) += compute_stiffness(t,v,i,j);
end
end
end
% newton's method
export func newton_method()
while abs(f - verts.fe) > 1e-6 K = map triangle_stiffness to triangles reduce +; // assemble force vector // compute new position

Statics Triangular Neo-Hookean FEM Simulation


```
element Vertex
    B : matrix[3,3](float); % strain-displacement
end
\% compute triangle area
func compute_area(inout \(t\) : Triangle, v: (Vertex*3))
t. \(\mathrm{B}=\) compute_B(v);
t. W = \(\operatorname{det}(B) / 2.0 ;\)
end
export func init()
apply compute_area to triangles;
end
```

element Vertex
X : vector[3](float);
V : vector[3](float)
end
element Triangle

```
    u : float; % shear modulus
```

 u : float; % shear modulus
 : float; % lame's first parameter
 : float; % lame's first parameter
 W : float; % volume
 W : float; % volume
 。 shear modulus
\% lame's first parameter
\% volume

```
\% graph vertices and triangle hyperedges extern verts : set\{Vertex\};
extern triangles : set\{Triangle\}(verts, verts, verts);
\% position
\% velocity
\% external force
; strain-displacement
B : matrix[3,3](float);
end
\% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
-> K : matrix[verts, verts](matrix[3,3](float))

\section*{for i in 0:3}
for \(j\) in \(0: 3\)
\(K(v(i), v(j))+=\) compute_stiffness(t,v,i,j);
end
end
\% computes the force of a triangle on its vertices func triangle_force(t : Triangle, v : (Vertex*3))
\(\rightarrow \mathrm{f}\) : vector[verts](vector[3](float))
for i in 0:3
f(v(i)) += compute_force(t,v,i);
end
end
\% newton's method
export func newton_method()
while abs(f - verts.fe) > 1e-6
K = map triangle_stiffness to triangles reduce +;
f = map triangle_force
// compute new position
end
end

\section*{Statics Triangular Neo-Hookean FEM Simulation}
\[
x_{t+1}=x_{t}+K^{-1}\left(f_{\text {external }}-f\right)
\]


\section*{Statics Triangular Neo-Hookean FEM Simulation}


\section*{Statics Triangular Neo-Hookean FEM Simulation}
\[
x_{t+1}=x_{t}+K^{-1}\left(f_{\text {external }}-f\right)
\]


\section*{Statics Triangular Neo-Hookean FEM Simulation}


\section*{Statics Triangular Neo-Hookean FEM Simulation}

```

element Vertex
X : vector[3](float);
v : vector[3](float);
fe: vector[3](float);
end
element Triangle
u : float;
l : float;
W : float
W : float; [3,3](float): % strain-displacement
end
\% position
\% velocity
\% external force
\% shear modulus
\% lame's first parameter
\% volume
B : matrix[3,3](float); \% strain-displacement
end

```
\% graph vertices and triangle hyperedges extern verts : set\{Vertex\};
extern triangles : set\{Triangle\}(verts, verts, verts);
\% compute triangle area
func compute_area(inout \(t\) : Triangle, v : (Vertex*3))
t. \(\mathrm{B}=\) compute_ \(\mathrm{B}(\mathrm{v})\);
t. W = \(\operatorname{det}(B) / 2.0 ;\)
end
export func init()
apply compute_area to triangles;
end
d
\% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
\[
\rightarrow \text { K : matrix[verts, verts](matrix[3,3](float)) }
\]
\[
\text { for i in } 0: 3
\]
for \(j\) in \(0: 3\)
\(K(v(i), v(j))+=\) compute_stiffness(t,v,i,j); end
end
\% computes the force of a triangle on its vertices func triangle_force(t : Triangle, v: (Vertex*3))
\(\rightarrow \mathrm{f}\) : vector[verts](vector[3](float))
for i in 0:3
f(v(i)) += compute_force(t,v,i);
end
end
\% newton's method
export func newton_method()
while abs(f - verrts.fe) > 1e-6
K = map triangle_stiffness to triangles reduce +; f = map triangle_force to triangles reduce + ; verts.x = verts.x + K \ (verts.fe - f);
end

\section*{Collection-Oriented Languages}

\author{
Lists \\ Lisp M58
}

\author{
Sets \\ SETL S70
}
Nested Sequences
NESL B94


Relations Relational Algebra C70,


Graphs
GraphLab L10


Meshes
Liszt D11


Grids
Sejits S09, Halide


Vectors
Vector Model B90


\section*{Arrays}

APL I62
NumPy


Matrices and Tensors Matlab M79, taco K17



> Lecture \(3 \sqrt{ }\)
> Building DSLs```

