Lecture 6 — Sparse Programming Systems

Stanford CS343D (Winter 2023)
Fred Kjolstad

Lecture 2 \/

Domain-Specific

Lecture Overview

N

Compilers Lecture 5 \/
Dense Programming
Lecture 4 \/ oystems
Collection-Oriented | ecture 6
Languages \'Sparse Programming
Systems
Lecture 1BD
Notation
Lecture 3\/ Lecture 14

Building DSLs

Fast Compilers

Lecture 7
lteration Model |

L ecture 8
lteration Model ||

Terminology: Regular and Irregular

Fully Connected System

s
pSa=
AN
N ‘!

Regular System

Irregular System

Three classes of irregular systems

Road Networks Fractional Sparsity

Power Law Graphs

Terminology: Dense and Sparse

Dense loop iteration space Sparse loop iteration space
.? ? o 0 © ?
o o oll o o o 02#1 ?E‘ Y
> o A O el el B > o .
oo o o o o o o ® o
! i%z a8 .m*%
o+ + 693 o ® + ®
oo oqégooo ° oo
°* o +d% o o o o# o o o
o O ® o O ‘. }
° o éi }:oo ® ° o o ?oo
for (int 1 = 0; i < m; i++) { for (int 1 = 0; i < m; i++) {
for (int j = 0; j < n; j++) A{ for (int pA = A2_pos[i]; pA < A_pos[i+1l]; pA++) {
y[i] += A[ikn+j] * xI[j]; int j = A_crd[pAl;
} y[i] += Al[pA]l *x xI[jl];
¥ , ¥

y = AXx y = AXx

Three sparse applications areas

Tensors

Relations

Graphs

Age

54
35
23
84
19
76
32
62

e

Nonzeros are a subset of the
cartesian combination of sets

A relation is a subset of the
cartesian combination of sets

Graph edges are a subset of the
cartesian combination of sets

Sparse lteration Spaces

J

Relations, graphs, and tensors share a lot of structure but

are specialized for different purposes

Relations

Graphs

Tensors

Age

54
35
23
84
19

32
62

S

Combine data to
form systems

Local operations
on systems

Global operations
on systems

Relations

Solves

Tensor

Filters

Pagerank

Triangle
Counting

Dijkstra’s
Algorithm

Graphs

Triangle counting on graphs, relations, and tensors

On graphs

Triangle counting on graphs, relations, and tensors

On graphs

Triangle counting on graphs, relations, and tensors

On graphs

Triangle counting on graphs, relations, and tensors

On graphs

Triangle counting on graphs, relations, and tensors

On graphs

Triangle counting on graphs, relations, and tensors

On graphs

Triangle counting on graphs, relations, and tensors

On graphs

Triangle counting on graphs, relations, and tensors

On graphs On relations

O = E(A,B)) E(B, C) M} E(C, A)

Triangle counting on graphs, relations, and tensors

On graphs On relations

O = E(A,B) X E(B, C) M} E(C, A)

Triangle counting on graphs, relations, and tensors

On graphs On relations

O = E(A,B) X E(B, C) M} E(C, A)

Triangle counting on graphs, relations, and tensors

On graphs On relations

O = E(A,B)) E(B, C) M} E(C, A)

Triangle counting on graphs, relations, and tensors

On graphs On relations On tensors

1
O = E(A, B) W} E(B, C) I} E(C, A) 5 trace(4).

Some important developments in compilers and
programming languages for sparse compilers

» 1960s: Development of libraries for sparse linear algebra

» 1970s: Relational algebra and the first relational database
management systems: System R and INGRES

« 1980s: SQL is developed and has commercial success

» 1990s: Matlab gets sparse matrices and some dense to sparse linear
algebra compilers are developed

» 2000s: Sparse linear algebra libraries for supercomputers and GPUs

» 2010s: Graph processing libraries become popular, compilers for
databases, and compilers for tensor algebra

Parallelism, locality, work efficiency still matters,
but the key Is choosing efficient data structures

work locality
efficiency
work locality
efficiency
parallelism
parallelism data structures
0 2
0 2
Harry CS O|1 3
Sally EE Harry Sally George Mary Rita ol ol
George CS CS EE CS ME CS
Mary ME O/ 3 5 8
Rita CS o 2|3 0 2|12 3
30/40 /50 10, 70802060

Sparse data structures in graphs, tensors, and relations
encode coordinates in a sparse iteration space

Tensor (honzeros) Relation (rows) Graph (edges)
(Harry,CS) |
(0,1) (Sally,EE) (1.v5) (Va4,V3)
(2,3) (0.5) (George,CS) (Vs,Vs)
Mary,ME
(55) (7.5) Riacs) oM wavs) VY

Values may be attached to these coordinates: e.g., nonzero values, edge attributes

11

Hierarchically compressed data structures (tries)
reduce the number of values that need to be stored

0| A B

l C|D|E

2 F
A B C D E F

|0

12

Hierarchically compressed data structures (tries)
reduce the number of values that need to be stored

12

Hierarchically compressed data structures (tries)
reduce the number of values that need to be stored

row(3) = 77?7
col(3) = 7?7
A B C

12

Hierarchically compressed data structures (tries)
reduce the number of values that need to be stored

Coordinate 0

rows O O 1|1 1 2

cols O 2 1 2|3 3

FOWS

cols

Hierarchically compressed data structures (tries)
reduce the number of values that need to be stored

Coordinate

111

12

Hierarchically compressed data structures (tries)
reduce the number of values that need to be stored

Coordinate pyplicates 0

/

rows O O1 1|1 1]2

cols O 2 1 2|3 3

Hierarchically compressed data structures (tries)
reduce the number of values that need to be stored

Compressed Sparse Rows (CSR) 0

0 | 2 3

pos O 2 | 5 | 6

| C
cols|JO ;_|1 2 3|3\ ’

lteration over sparse Iteration spaces imply coiteration
over sparse data structures

Linear Algebra: A =B+ C
Tensor Index Notation: Aij — sz + Czj

lteration Space: Bij U Cij

union because x + 0 = x

SRS
® ® ®
Sasdnsas B
® ®
. . . pos |0 | 3|58 pos | O
® ¢+ ° U
. * oo ° colsjo|2|(3 /021|238 cols| 0
o O
Ve e °* o . vals 30 40 50|10 70 80| 20 60 vals| 2
*o }
° ° o o Too >

N 7

colterate

Merged coiteration

Coordinate Space

14

Merged coiteration

Coordinate Space

~N OO o0 &~ W0 N 2+ O

X

N OO o~ W0 N =+ O

14

Merged coiteration

Coordinate Space

~ o O 4 O

14

Merged coiteration

Coordinate Space

N~ | o oo

14

Merged coiteration

Coordinate Space

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

N~ | o oo

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

N~ | o oo

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

N~ | o |2 o

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

N~ | ol oo

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

N~ | ol oo

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

N~ | ol oo

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

~lo | oo

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

~lo | oo

b; + c;

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

1N

~lo | oo

14

Merged coiteration

Coordinate Space

~N OO o0~ W0 N 2+ O

N~ | o oo

b; + c;

14

Merged coiteration code

Intersection b N ¢

int pb = b_pos[0];
int pc = c_pos[0];
while (pb < b_pos[1] && pc < c_pos[1]) {
int ib = b_crd[pb];
int ic = c_crd(pcl;
int 1 = min(ib, ic);
if (ib == i && ic == i) {
ali]l = blpb] * clpcl;

I3
if (ib == i) pb++;
if (ic == 1) pc++;
s
b C

15

Merged coiteration code

Intersection b N ¢

int pb = b_pos[0];
int pc = c_pos|[0];
while (pb < b pos[l] && pc < c_pos[1]) A
int ib = b_crd[pb];
int ic = c_crd[pc];
int 1 = min(ib, ic);
if (ib == 1 && ic == 1) A
alil = blpbl * clpcl;

}
if (ib == 1) pb++;
if (ic == i) pc++;
I3
b C

Union b U ¢

int pb = b_pos[0];
int pc = c_pos|[0];
while (pb < b pos[l] && pc < c_pos[1]) A
int ib = b_crdpb];
int ic = c_crd[pc];
int 1 = min(ib, ic);
if (ib == i && ic == i) A
\ alil = b[pbl + clpcl;
else if (ib == i) {
alil = blpbl;

I

else {

\ ali] = clpcl;

if (ib == 1i) pb++;
if (ic == 1) pc++;

}

while (pb < b_pos[1]) {
int 1 = b_crd[pbl;
alil = blpb++];

¥

while (pc < c_pos[1]) {
int i = c_crdlpcl;
ali]l = clpc++];

}

15

lterate-and-locate examples (intersection)

iterate over b locate from ¢

W

D C

106

lterate-and-locate examples (intersection)

iterate over b locate from ¢

\ / for (int pb = b_pos[0]; pb < b _pos[1]; pb ++) 1

int 1 = b_crd[pb];
b C a += blpbl * cli];
I3

106

Separation of Algorithm, Data Representation, and Schedule

Algorithm
Language

Data Representation
Language

Scheduling
Language

Compiler

DSASs

17

Separation of Algorithm, Data Representation, and Schedule

Algorithm
Language

Data Representation
Language

Scheduling
Language

Compiler

Most of HW retargeting is about changing
schedules and data representations

DSASs

17

