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Classical compiler overview

*

There is a lot of work to compiling optimized code

Code Generator

Optimizer

Type Checker

Parser

Lexer
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Compilation times matter

• LLVM -O0 vs -O2 (10x difference)

• Scala (large type checking cost)

• WebAssembly (51s for AutoCAD)

• Databases (4.5s for TPC Q19 query)

• Taco (generated expressions)

• JIT compilers (compilation at runtime)

• JavaScript (teams of engineers)
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How can we speed up compilation? — Let us brainstorm

• Multithreading


• Turn off optimization


• Interpretation instead of compilation


• Use bytecode for partial pre-compilation


• Change language: e.g., simplify type system
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Tradeoff between compilation time and code performance
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Idea: Two-tiered execution

Tier 1: Fast startup

• Interpreter


• LLVM -O0


• Baseline single-pass compilers

Tier 2: Fast execution

• Java HotSpot JIT Compiler


• LLVM -O2


• Google V8 TurboFan

Used in many dynamic language VMs, compilers, and databases

Examples: Java, JavaScript, Lua, WebAssembly, Databases



More

Optimizing 

Compiler
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JavaScript Virtual Machine

Tier up
Tier up

OSR Exit
Interpreter Baseline


Compiler

(e.g., type speculation)

Optimizing

Compiler
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Baseline compiler web example

Figures borrowed from Lin Clark

https://hacks.mozilla.org/2018/01/making-webassembly-even-faster-firefoxs-new-

200ms can be perceived by users and cause them to visit a webpage less frequently



void BaseCompiler::emitAddI32() {

    RegI32 r, rs;
    pop2xI32(&r, &rs);
    masm.add32(rs, r);
    freeI32(rs);
    pushI32(r);

}
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Baseline compiler web example

void BaseCompiler::emitAddI32() {
  int32_t c;
  if (popConstI32(&c)) {
    RegI32 r = popI32();
    masm.add32(Imm32(c), r);
    pushI32(r);
  } else {
    RegI32 r, rs;
    pop2xI32(&r, &rs);
    masm.add32(rs, r);
    freeI32(rs);
    pushI32(r);
  }
}

(func (param i32) (result i32)
  local.get 0
  i32.eqz
  if (result i32)
      i32.const 1
  else
      local.get 0
      local.get 0
      i32.const -1
      i32.add
      call 0
      i32.mul
  end)

WebAssembly (sent in binary) Baseline compiler rule (Firefox)

Baseline

Compilation
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Copy-and-Patch is a fast baseline compilation algorithm
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Copy-and-Patch is a fast baseline compilation algorithm
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Two use cases

Tier 1: Copy-and-Patch Tier 2: Optimizing Compiler

WebAssembly Bytecode

Clang with WebAssembly Backend

Applications

Client Browser

Development Environment

WebAssembly

Applications, Query Compilers, and DSL Libraries 

Metaprogramming API

Copy-and-Patch Backend LLVM Backend

Abstract Syntax Tree (AST)

Metaprogramming System
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Idea 1: precompile all language constructs

At compile-timeLibrary of precompiled 
language constructs

For each AST node:

1. Hash lookup

2. Binary code copy

3. Patch in stack offsets and jump targets

(missing stack offsets and jump targets)

add

mulload

iffor

sub

while
...

neg
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Idea 1: precompile all language constructs

Copy-and-Patch

Stencil LibraryLLVM
generate

build-time run-time
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Most performance comes from two optimizations (80/20 rule)

• Vilfredo Pareto: “80% of the consequences come from 20% of causes”

• 80% of the performance gain comes from two optimizations

1. Instruction selection

2. Register Allocation

According to Vladimir Makarov (GCC developer): https://developers.redhat.com/blog/2020/01/20/mir-a-lightweight-jit-compiler-
project#lightweight_jit_compiler_project_goals

https://developers.redhat.com/blog/2020/01/20/mir-a-lightweight-jit-compiler-project#lightweight_jit_compiler_project_goals
https://developers.redhat.com/blog/2020/01/20/mir-a-lightweight-jit-compiler-project#lightweight_jit_compiler_project_goals
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Idea 2: Instruction Selection


Precompile specialized stencil variants for constants and super-nodes

Library of precompiled 
language constructs

add

mulload

iffor

sub

while
...

neg
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Idea 2: Instruction Selection


Precompile specialized stencil variants for constants and super-nodes

Library of precompiled 
language constructs

add(const, const)

mul_add(stack,stack)
load

if_leqfor

sub(stack,stack)

while

...

add(stack, const)

if
load_offset
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Idea 2: Instruction Selection


Precompile specialized stencil variants for constants and super-nodes

At compile-timeLibrary of precompiled 
language constructs

For each AST node:

1. Supernode Tree search

2. Hash lookup

3. Binary code copy

4. Patch in stack offsets, jump targets, and 
constants

add(const, const)

mul_add(stack,stack)
load

if_leqfor

sub(stack,stack)

while

...

add(stack, const)

if
load_offset
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Idea 3: Register Allocation

Precompile specialized stencil variants that use different registers

Library of precompiled 
language constructs

add(const, const)

mul_add(stack,stack)
load

if_leqfor

sub(stack,stack)

while

...

add(stack, const)

if
load_offset

add(r1, r2)

add(r1, const)

At compile-time

For each AST node:

1. Supernode Tree search

2. Expression register allocation

3. Hash lookup

4. Binary code copy

5. Patch in stack offsets, jump targets, and 
constants
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Compile a large stencil variant library for use during compilation

Created at compiler build time, used to compile at runtime

High-Level Imperative Language

• 98,831 stencils


• 17.5 megabytes


• 14 minutes to compile

WebAssembly

• 1666 stencils


• 30 kilobytes


• <1 minute to compile

How can we create all of these stencils?
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We write variant groups in C++ using templates

and Clang+LLVM compiles them for us

Stencil Generators

Object Code

Stencil generation
(by C++ template instantiation)

Stencil Library Copy-and-Patch 
Implementation

Copy-and-Patch 
Runtime

Configuration-Stencil 
Pairs

Stencil extraction
(using LLVM Object File API)

Library construction

Linking
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Variants

void eq_int(uintptr_t stack, int lhs, int rhs) {
  bool result = (lhs == rhs);
  (void(*)(uintptr_t, bool)   )(stack, result);
}

1

void eq_int_lvar_rconst(uintptr_t stack) {
  int lhs = *(int*)(stack +   );
  int rhs =   ;
  bool result = (lhs == rhs);
  (void(*)(uintptr_t, bool)   )(stack, result);
}

1
2

3

void eq_int_pt(uintptr_t stack, uint64_t r1, int rhs) {
  int lhs =   ;
  bool result = (lhs == rhs);
  (void(*)(uintptr_t,uint64_t,bool)   )(stack, r1, result);
}

1

2

void if(uintptr_t stack, bool test) {
  if (test)
    (void(*)(uintptr_t)   )(stack);
  else
    (void(*)(uintptr_t)   )(stack);
}

1

2

Registers operands lhs and rhs

Call next operation

Stack operand
Constant

Register communicated 
from a previous operation 
to a later operations
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Continuation-passing style and tail call optimization
The core of the trick

Consider the following function:

extern int evaluate_lhs();

extern int evaluate_rhs();

int evaluate()

{

int lhs = evaluate_lhs();

int rhs = evaluate_rhs();

return lhs + rhs;

}

Haoran Xu and Fredrik Kjolstad Stanford University Copy-and-Patch Compilation 19 / 44

Typical recursive interpreter code Faster continuation-passing style

Copy-and-Patch Compilation 136:7

code generation, as we describe in Section 4, the runtime AST or bytecode sequence are pattern-
matched to stencils and supernode stencils. The selected stencils are copied and the missing values
inserted. For example, if an instruction uses a literal then the value is filled in, and if it has a branch
instruction to the next operation then the address is inserted.

(a + b) == c

Fig. 7. CPS

The binary stencils use continuation-passing style (CPS) [Steele 1977]
to pass control to the next stencil. With continuation-passing, control
is passed directly to the next operation instead of being returned to
the parent operation. Figure 7 shows how continuation-passing control
flow moves bottom-up through an expression. Since function calls to
pass on control are tail calls, the Clang C++ compiler that the MetaVar system uses to compile
stencils lowers them to jump instructions. Combined with the GHC calling convention [GHC and
LLVM 2020], in which all registers are saved by the caller and all parameters are passed in registers,
continuation-passing removes most of the calling overhead between stencils.

Register allocation is another important optimization required for fast binary code. The obvious
way to pass a temporary value between stencils is to reserve a slot in the stack frame whose
offset is represented by a stencil hole. However, this is suboptimal in term of performance (since
each read/write is a memory access), and we want to allow temporary values to be passed around
in CPU registers. The trick to accomplish this also lies in the GHC calling convention, where
all function parameters are passed in registers. Therefore, to pass a value as a parameter to the
continuation is to pass this value in register to another stencil. In other words, we repurpose the
function prototype and the calling convention as a register allocation protocol, where each function
parameter implicitly corresponds to some physical register determined by the calling convention.
We generate different variants of stencils with different function prototypes for different register
configurations, so that at runtime we can pick the right one based on the circumstance.

void stencil1(uintptr_t stack) {
  int x = /* assign value to x */;
  (void(*)(uintptr_t, int)   )(stack, x);
}

void stencil2(uintptr_t stack, uint64_t x) {
   // computation unrelated to x
   (void(*)(uintptr_t, uint64_t)   )(stack, x);
}

void stencil3(uintptr_t stack, int x) {
   // do something with x
}

Fig. 8. Three stencils that are executed in the
order of the arrows. The first stencil produces
a temporary value x that we want to pass in a
register to the third stencil. The second stencil
is executed in between, so it must not clobber
the register. This is achieved by the pass-through
parameter in the second stencil.

We cannot naively enumerate all possible com-
binations of function prototypes for the different
types of values that may be passed through, since
the total number of combinations grows exponen-
tially. The crucial observation is that each stencil
only cares about its own inputs. The contents stored
in the other registers do not matter, as long as they
are not clobbered by the stencil. Therefore, for those
registers, it is sufficient to always represent it by
the longest type (uint64_t or double), and pass it
from the argument to the continuation verbatim. We
demonstrate this with a concrete example as shown
in Figure 8. In this example, we have three stencils.
Stencil 1 produces a temporary value x of type int,
which is to be consumed by stencil 3. But stencil 2 is
executed in between, so it must be instructed to not
clobber the register holding the value. As shown in
the figure, stencil 1 calls its continuation with the
temporary value x as a new parameter. This puts the
value in the register. Stencil 2 does not care about
what is stored in the register, but it must not clobber it. This is achieved by having x passed
directly from the parameter to its continuation: we call it a pass-through parameter. There are two
points worth mentioning. First, despite that the true type of x is int, the type of the pass-through
parameter is uint64_t. This prevents the exponential explosion of different type combinations

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 136. Publication date: October 2021.
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Register pass-through

Copy-and-Patch Compilation 136:7

code generation, as we describe in Section 4, the runtime AST or bytecode sequence are pattern-
matched to stencils and supernode stencils. The selected stencils are copied and the missing values
inserted. For example, if an instruction uses a literal then the value is filled in, and if it has a branch
instruction to the next operation then the address is inserted.

(a + b) == c

Fig. 7. CPS

The binary stencils use continuation-passing style (CPS) [Steele 1977]
to pass control to the next stencil. With continuation-passing, control
is passed directly to the next operation instead of being returned to
the parent operation. Figure 7 shows how continuation-passing control
flow moves bottom-up through an expression. Since function calls to
pass on control are tail calls, the Clang C++ compiler that the MetaVar system uses to compile
stencils lowers them to jump instructions. Combined with the GHC calling convention [GHC and
LLVM 2020], in which all registers are saved by the caller and all parameters are passed in registers,
continuation-passing removes most of the calling overhead between stencils.

Register allocation is another important optimization required for fast binary code. The obvious
way to pass a temporary value between stencils is to reserve a slot in the stack frame whose
offset is represented by a stencil hole. However, this is suboptimal in term of performance (since
each read/write is a memory access), and we want to allow temporary values to be passed around
in CPU registers. The trick to accomplish this also lies in the GHC calling convention, where
all function parameters are passed in registers. Therefore, to pass a value as a parameter to the
continuation is to pass this value in register to another stencil. In other words, we repurpose the
function prototype and the calling convention as a register allocation protocol, where each function
parameter implicitly corresponds to some physical register determined by the calling convention.
We generate different variants of stencils with different function prototypes for different register
configurations, so that at runtime we can pick the right one based on the circumstance.

void stencil1(uintptr_t stack) {
  int x = /* assign value to x */;
  (void(*)(uintptr_t, int)   )(stack, x);
}

void stencil2(uintptr_t stack, uint64_t x) {
   // computation unrelated to x
   (void(*)(uintptr_t, uint64_t)   )(stack, x);
}

void stencil3(uintptr_t stack, int x) {
   // do something with x
}

Fig. 8. Three stencils that are executed in the
order of the arrows. The first stencil produces
a temporary value x that we want to pass in a
register to the third stencil. The second stencil
is executed in between, so it must not clobber
the register. This is achieved by the pass-through
parameter in the second stencil.

We cannot naively enumerate all possible com-
binations of function prototypes for the different
types of values that may be passed through, since
the total number of combinations grows exponen-
tially. The crucial observation is that each stencil
only cares about its own inputs. The contents stored
in the other registers do not matter, as long as they
are not clobbered by the stencil. Therefore, for those
registers, it is sufficient to always represent it by
the longest type (uint64_t or double), and pass it
from the argument to the continuation verbatim. We
demonstrate this with a concrete example as shown
in Figure 8. In this example, we have three stencils.
Stencil 1 produces a temporary value x of type int,
which is to be consumed by stencil 3. But stencil 2 is
executed in between, so it must be instructed to not
clobber the register holding the value. As shown in
the figure, stencil 1 calls its continuation with the
temporary value x as a new parameter. This puts the
value in the register. Stencil 2 does not care about
what is stored in the register, but it must not clobber it. This is achieved by having x passed
directly from the parameter to its continuation: we call it a pass-through parameter. There are two
points worth mentioning. First, despite that the true type of x is int, the type of the pass-through
parameter is uint64_t. This prevents the exponential explosion of different type combinations

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 136. Publication date: October 2021.
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Hack: use C++ extern keyword to locate holes in generated codeThe core of the trick

Consider the following function:

extern int evaluate_lhs();

extern int evaluate_rhs();

int evaluate()

{

int lhs = evaluate_lhs();

int rhs = evaluate_rhs();

return lhs + rhs;

}

Haoran Xu and Fredrik Kjolstad Stanford University Copy-and-Patch Compilation 19 / 44

1. C++ compiler generates an object file

2. The linker can link object files to any 
definition of the extern calls

3. The object file thus contains information 
to locate them in the binary code

4. We can use this information to locate 
holes in stencils for later patching
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Using templates we can generate groups of variants
struct ArithAdd {
  template<typename T /* OperandType */,
           bool spillOutput,
           NumPassthroughs numPassThroughs,
           typename... Passthroughs>
  static void g(uintptr_t stack, Passthroughs... pt, T a, T b) {
    T c = a + b;
    if constexpr (! spillOutput) {
      DEF_CONTINUATON_0(void(*)(uintptr_t, Passthroughs...,T));
      CONTINUATON_0(stack, pt..., c);  // continuation
    } else {
      DEF_CONSTANT_1(uint64_t);
      *(T*)(stack + CONSTANT_1) = c;
      DEF_CONTINUATON_0(void(*)(uintptr_t, Passthroughs...));
      CONTINUATON_0(stack, pt...);     // continuation
    }
  }

  template<typename T /* OperandType */,
           bool spillOutput,
           NumPassthroughs numPassThroughs>
  static constexpr bool f() {
    if (numPt > numMaxPassthroughs - 2) return false;
    return !std::is_same<T, void>::value;
  }

  static auto metavars() {
    return createMetaVarList(
      typeMetaVar(),
      boolMetaVar(),
      enumMetaVar<NumPassthroughs::X_END_OF_ENUM>());
  }
};

extern "C" void generate(StencilList* result) {
  runStencilGenerator<ArithAdd>(result);
}
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Fibonacci compilation example

If-Leq
(var-const)

Return Caller
(spill-ret)

Return

Sub
(var-const)

Callee

Callee

Caller

Sub
(var-const)

Add

fib function entry

jumps between
consecutive code
blocks are removed

only spilled value

Literal
(uint64_t)

If(n <= 2).Then(
  Return(1ULL)
).Else(
  Return(Call<FibFn>(“fib”, n-1)
       + Call<FibFn>("fib", n-2))
)

00: mov    0x8(%r13),%r12d
07: mov    $0x2,%eax
0c: sub    %eax,%r12d
0f: mov    %r12d,0x8(%rbp)
13: mov    %rbp,%r13
20: mov    $0x2,%eax
25: cmp    %eax,0x8(%r13)
2c: jg     40
32: movabs $0x1,%rbp
3c: mov    %rbp,%rax
3f: retq   
40: sub    $0x38,%rsp
44: mov    %r13,0x8(%rsp)
49: lea    0x10(%rsp),%rbp
4e: callq  90
53: mov    0x8(%rsp),%r13
58: mov    %rax,0x10(%r13)
5f: add    $0x38,%rsp
63: sub    $0x38,%rsp
67: mov    %r13,0x8(%rsp)
6c: lea    0x10(%rsp),%rbp
71: callq  00
76: mov    0x8(%rsp),%r13
7b: mov    %rax,%rbp
7e: add    $0x38,%rsp
82: add    0x10(%r13),%rbp
89: mov    %rbp,%rax
8c: retq   
90: mov    0x8(%r13),%r12d
97: mov    $0x1,%eax
9c: sub    %eax,%r12d
9f: mov    %r12d,0x8(%rbp)
a3: mov    %rbp,%r13
a6: jmpq   20
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Execution performance breakdown

��� ���
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1

17.2 5.6 5.5

jump removal

register alloc

optimized C&P

misc low-level opt.
super nodes

unoptimized C&P

interpreter
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Final copy-and-patch performance

Compilation 
Speedup

Execution
Speedup

Google Chrome 
Liftoff

(baseline compiler)
4.9 – 6.5 1.46 – 1.63

Google Chrome 
TurboFan

(optimizing compiler)

30 – 47
(small module)

88 – 91
(large module)

0.69 – 0.85

WebAssembly Baseline Compiler

Compilation 
Speedup

Execution
Speedup

Interpreter 0.3 – 0.5 6 – 36

LLVM -O0 79 – 267 1.02 – 1.57

LLVM -O2 936 – 1384 0.61 – 0.96

High-level imperative language

(for metaprogramming)

Copy-and-Patch


