
1

Lecture 5 — Dense Programming Systems

Stanford CS343D (Winter 2024)
Fred Kjolstad

2

Lecture 4
Collection-Oriented

Languages

Lecture 7
Iteration Model I

Lecture 8
Iteration Model II

Lecture 6
Sparse Programming

Systems

Lecture 5
Dense Programming

Systems

Lecture 2
Domain-Specific

Compilers

Lecture 3
Building DSLs

3

Terminology: Regular and Irregular

Fully Connected Regular System Regular System Irregular System

4

Terminology: Dense and Sparse

Dense loop iteration space

for (int i = 0; i < m; i++) {
 for (int j = 0; j < n; j++) {
 y[i] += A[i*n+j] * x[j];
 }
}

y = Ax

0

m

0 n
Sparse loop iteration space

 for (int i = 0; i < m; i++) {
 for (int pA = A2_pos[i]; pA < A_pos[i+1]; pA++) {
 int j = A_crd[pA];
 y[i] += A[pA] * x[j];
 }
 }

y = Ax

0

m

0 n

5

Dense applications

Dense Matrix-Vector Multiplication Triagonal SolveStencils

6

Timeline of some important developments in compilers
and programming languages for dense compilers

Chapter 8

Related Work

“Do not seek the footsteps of the
wise; seek what they sought.”
— Matsuo Bashō

8.1 Sparse Compilers
8.2 Sparse Kernel Libraries
8.3 Sparse Programming

Systems
8.4 Dense Programming

Systems and Compilers

In this chapter, I provide a history of the work on compilers, libraries,
and programming systems for sparse linear and tensor algebra. Fig-
ure 8-1 shows a timeline of signi�cant developments classi�ed into
three categories: sparse compilers, sparse kernel libraries, and sparse
programming systems. Throughout this chapter, I describe and con-
trast these categories and discuss their pros and cons. To put these
sparse developments in context, I then end with a brief overview of
the longer history on language and compiler support for dense ar-

1950 1960 1970 1980 1990 2000 2010

Sparse
Compilers

taco [74]
Inspector–Executor [91]

Bik et al. [25]
Bernoulli [80]

SIPR [101]
CHiLL-I/E [124]Sparse Loop Optimizations

Sparse Tensor Algebra Compilation

Sparse
Kernel
Libraries

COO [109]
CSR [120]

Algorithm 408 [88]

CSPARSE [43]ITPACK [71] SPARSKIT [107]
PETSc [17]

Shared Memory [127]
GPUs [21]

SPLATT [112]

Sparse Pro-
gramming
Systems

Sparse MATLAB [53] Julia [22]
TTB [14]

Sparse CTF [116]

Dense
Programming

Systems

Fortran
APL

MATLAB

LL
Vector Model

NESL SPIRAL
TCE

NumPy
Halide

TVM
TC

Dense Loop
Optimization

Loop-Invariant Code Motion Distributed-Memory
Loop SkewingLoop Unroll and Fusion Polaris

Operator Strength Reduction PolyLib
Loop Interchange SUIF PLUTO

Polyhedral Model Polyhedra Scanning PENCIL
Parametric Integer Programming Transformation Scripts

Automatic Loop Parallelization Omega Library
Dependence Testing Omega Test

Data�ow Analysis Unimodular Trans.

Figure 8-1: Timeline of e�orts to provide library and programming system support for array and tensor computations.

112

Chapter 8

Related Work

“Do not seek the footsteps of the
wise; seek what they sought.”
— Matsuo Bashō

8.1 Sparse Compilers
8.2 Sparse Kernel Libraries
8.3 Sparse Programming

Systems
8.4 Dense Programming

Systems and Compilers

In this chapter, I provide a history of the work on compilers, libraries,
and programming systems for sparse linear and tensor algebra. Fig-
ure 8-1 shows a timeline of signi�cant developments classi�ed into
three categories: sparse compilers, sparse kernel libraries, and sparse
programming systems. Throughout this chapter, I describe and con-
trast these categories and discuss their pros and cons. To put these
sparse developments in context, I then end with a brief overview of
the longer history on language and compiler support for dense ar-

1950 1960 1970 1980 1990 2000 2010

Sparse
Compilers

taco [78]
Inspector–Executor [95]

Bik et al. [25]
Bernoulli [84]

SIPR [105]
CHiLL-I/E [128]Sparse Loop Optimizations

Sparse Tensor Algebra Compilation

Sparse
Kernel
Libraries

COO [113]
CSR [124]

Algorithm 408 [92]

CSPARSE [46]ITPACK [75] SPARSKIT [111]
PETSc [17]

Shared Memory [131]
GPUs [21]

SPLATT [116]

Sparse Pro-
gramming
Systems

Sparse MATLAB [56] Julia [22]
TTB [14]

Sparse CTF [120]

Dense
Programming

Systems

Fortran [12]
APL [68]

MATLAB [123]

LL [7]
Vector Model [29]

NESL [30] SPIRAL [106]
TCE [9]

NumPy [102]
Halide [107]

TVM [40]
TC [127]

Dense Loop
Optimization

Loop-Invariant Code Motion [2] Distributed-Memory [38]
Loop Skewing [132]Loop Unroll and Fusion [3] Polaris [31]

Operator Strength Reduction [42] PolyLib [130]
Loop Interchange [133] SUIF [4] PLUTO [33]

Polyhedral Model [85] Polyhedra Scanning [5] PENCIL [15]
Parametric Integer Programming [53] Transformation Scripts [39]

Automatic Loop Parallelization [96] Omega Library [71]
Dependence Testing [18] Omega Test [104]

Data�ow Analysis [74] Unimodular Trans. [19]

Figure 8-1: Timeline of e�orts to provide library and programming system support for array and tensor computations.

112

7

Traditional compiler loop transformations

for (int i=0; i<m; i++)
 for (int j=0; j<n; j++)
 A[i][j] = B[i][j] + C[i][j];

for (int j=0; j<n; j++)
 for (int i=0; i<m; i++)
 A[i][j] = B[i][j] + C[i][j];

Reorder (interchange)

8

Traditional compiler loop transformations

for (int i=0; i<m; i++)
 a[i] = b[i] + c[i];

for (int k=0; k<m; k+=4)
 for (int i=k; i<k+4; i++)
 a[i] = b[i] + c[i];

Split (Stripmine)

9

Traditional compiler loop transformations

for (int k=0; k<m; k+=4)
 for (int i=k; i<k+4; i++)
 a[i] = b[i] + c[i];

for (int k=0; k<m; k+=4)
 a[k:k+4] = b[k:k+4] + c[k:k+4];

Vectorize

10

Traditional compiler loop transformations

for (int i=0; i<m; i++)
 a[i] = b[i] + c[i];

for (int i=0; i<m; i++)
 d[i] = -b[i];

for (int i=0; i<m; i++)
 a[i] = b[i] + c[i];
 d[i] = -b[i];

Fusion

11

Traditional compiler loop transformations

for (int i=0; i<m; i++)
 for (int j=0; j<n; j++)
 A[i*m+j] = -B[i*m+j];

for (int ij=0; ij<m*n; ij++)
 A[ij] = -B[ij];

Collapse (flatten)

12

Two models of loop optimization: source code rewrite and
mathematical frameworks

for (int i=0; i<m; i++) {
 a[i] = b[i] + c[i];
}

for (int k=0; k<m; k+=4) {
 for (int i=k; i<k+4; i++) {
 a[i] = b[i] + c[i];
}

Source Code

Rewrite

split(4)

split(4)

convert to

integer domain code generation

for (int i=0; i<m; i++) {
 a[i] = b[i] + c[i];
}

for (int k=0; k<m; k+=4) {
 for (int i=k; i<k+4; i++) {
 a[i] = b[i] + c[i];
}

Mathematical

Frameworks

Mathematical loop optimization frameworks include the polyhedral model

13

Optimizing dense codes require complex tradeoffs
between parallelism, locality, and work efficiency

ACM Reference Format
Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S., Durand, F. 2012. Decoupling Algorithms
from Schedules for Easy Optimization of Image Processing Pipelines. ACM Trans. Graph. 31 4, Article 32
(July 2012), 12 pages. DOI = 10.1145/2185520.2185528 http://doi.acm.org/10.1145/2185520.2185528.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2012 ACM 0730-0301/2012/08-ART32 $15.00 DOI 10.1145/2185520.2185528
http://doi.acm.org/10.1145/2185520.2185528

Decoupling Algorithms from Schedules
for Easy Optimization of Image Processing Pipelines

Jonathan Ragan-Kelley⇤ Andrew Adams⇤ Sylvain Paris† Marc Levoy‡ Saman Amarasinghe⇤ Frédo Durand⇤

⇤MIT CSAIL †Adobe ‡Stanford University

Abstract
Using existing programming tools, writing high-performance im-
age processing code requires sacrificing readability, portability, and
modularity. We argue that this is a consequence of conflating what
computations define the algorithm, with decisions about storage
and the order of computation. We refer to these latter two concerns
as the schedule, including choices of tiling, fusion, recomputation
vs. storage, vectorization, and parallelism.

We propose a representation for feed-forward imaging pipelines
that separates the algorithm from its schedule, enabling high-
performance without sacrificing code clarity. This decoupling sim-
plifies the algorithm specification: images and intermediate buffers
become functions over an infinite integer domain, with no explicit
storage or boundary conditions. Imaging pipelines are compo-
sitions of functions. Programmers separately specify scheduling
strategies for the various functions composing the algorithm, which
allows them to efficiently explore different optimizations without
changing the algorithmic code.

We demonstrate the power of this representation by expressing
a range of recent image processing applications in an embedded
domain specific language called Halide, and compiling them for
ARM, x86, and GPUs. Our compiler targets SIMD units, multiple
cores, and complex memory hierarchies. We demonstrate that it
can handle algorithms such as a camera raw pipeline, the bilateral
grid, fast local Laplacian filtering, and image segmentation. The al-
gorithms expressed in our language are both shorter and faster than
state-of-the-art implementations.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Languages

Keywords: Image Processing, Compilers, Performance

Links: DL PDF WEB CODE

1 Introduction

Computational photography algorithms require highly efficient
implementations to be used in practice, especially on power-
constrained mobile devices. This is not a simple matter of pro-
gramming in a low-level language like C. The performance differ-
ence between naive C and highly optimized C is often an order of
magnitude. Unfortunately, optimization usually comes at the cost
of programmer pain and code complexity, as computation must be
reorganized to achieve memory efficiency and parallelism.

(a) Clean C++ : 9.94 ms per megapixel

void blur(const Image &in, Image &blurred) {
Image tmp(in.width(), in.height());

for (int y = 0; y < in.height(); y++)

for (int x = 0; x < in.width(); x++)

tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

for (int y = 0; y < in.height(); y++)

for (int x = 0; x < in.width(); x++)

blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

}

(b) Fast C++ (for x86) : 0.90 ms per megapixel

void fast_blur(const Image &in, Image &blurred) {
m128i one_third = _mm_set1_epi16(21846);

#pragma omp parallel for

for (int yTile = 0; yTile < in.height(); yTile += 32) {
m128i a, b, c, sum, avg;

m128i tmp[(256/8)*(32+2)];

for (int xTile = 0; xTile < in.width(); xTile += 256) {
m128i *tmpPtr = tmp;

for (int y = -1; y < 32+1; y++) {
const uint16_t *inPtr = &(in(xTile, yTile+y));

for (int x = 0; x < 256; x += 8) {
a = _mm_loadu_si128((m128i*)(inPtr-1));

b = _mm_loadu_si128((m128i*)(inPtr+1));

c = _mm_load_si128((m128i*)(inPtr));

sum = _mm_add_epi16(_mm_add_epi16(a, b), c);

avg = _mm_mulhi_epi16(sum, one_third);

_mm_store_si128(tmpPtr++, avg);

inPtr += 8;

}}
tmpPtr = tmp;

for (int y = 0; y < 32; y++) {
m128i *outPtr = (m128i *)(&(blurred(xTile, yTile+y)));

for (int x = 0; x < 256; x += 8) {
a = _mm_load_si128(tmpPtr+(2*256)/8);

b = _mm_load_si128(tmpPtr+256/8);

c = _mm_load_si128(tmpPtr++);

sum = _mm_add_epi16(_mm_add_epi16(a, b), c);

avg = _mm_mulhi_epi16(sum, one_third);

_mm_store_si128(outPtr++, avg);

}}}}}

(c) Halide : 0.90 ms per megapixel

Func halide_blur(Func in) {
Func tmp, blurred;

Var x, y, xi, yi;

// The algorithm

tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

// The schedule

blurred.tile(x, y, xi, yi, 256, 32)

.vectorize(xi, 8).parallel(y);

tmp.chunk(x).vectorize(x, 8);

return blurred;

}

Figure 1: The code at the top computes a 3⇥3 box filter using the
composition of a 1⇥3 and a 3⇥1 box filter (a). Using vectorization,
multithreading, tiling, and fusion, we can make this algorithm more
than 10⇥ faster on a quad-core x86 CPU (b). However, in doing so
we’ve lost readability and portability. Our compiler separates the
algorithm description from its schedule, achieving the same perfor-
mance without making the same sacrifices (c). For the full details
about how this test was carried out, see the supplemental material.

ACM Transactions on Graphics, Vol. 31, No. 4, Article 32, Publication Date: July 2012

ACM Reference Format
Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S., Durand, F. 2012. Decoupling Algorithms
from Schedules for Easy Optimization of Image Processing Pipelines. ACM Trans. Graph. 31 4, Article 32
(July 2012), 12 pages. DOI = 10.1145/2185520.2185528 http://doi.acm.org/10.1145/2185520.2185528.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2012 ACM 0730-0301/2012/08-ART32 $15.00 DOI 10.1145/2185520.2185528
http://doi.acm.org/10.1145/2185520.2185528

Decoupling Algorithms from Schedules
for Easy Optimization of Image Processing Pipelines

Jonathan Ragan-Kelley⇤ Andrew Adams⇤ Sylvain Paris† Marc Levoy‡ Saman Amarasinghe⇤ Frédo Durand⇤

⇤MIT CSAIL †Adobe ‡Stanford University

Abstract
Using existing programming tools, writing high-performance im-
age processing code requires sacrificing readability, portability, and
modularity. We argue that this is a consequence of conflating what
computations define the algorithm, with decisions about storage
and the order of computation. We refer to these latter two concerns
as the schedule, including choices of tiling, fusion, recomputation
vs. storage, vectorization, and parallelism.

We propose a representation for feed-forward imaging pipelines
that separates the algorithm from its schedule, enabling high-
performance without sacrificing code clarity. This decoupling sim-
plifies the algorithm specification: images and intermediate buffers
become functions over an infinite integer domain, with no explicit
storage or boundary conditions. Imaging pipelines are compo-
sitions of functions. Programmers separately specify scheduling
strategies for the various functions composing the algorithm, which
allows them to efficiently explore different optimizations without
changing the algorithmic code.

We demonstrate the power of this representation by expressing
a range of recent image processing applications in an embedded
domain specific language called Halide, and compiling them for
ARM, x86, and GPUs. Our compiler targets SIMD units, multiple
cores, and complex memory hierarchies. We demonstrate that it
can handle algorithms such as a camera raw pipeline, the bilateral
grid, fast local Laplacian filtering, and image segmentation. The al-
gorithms expressed in our language are both shorter and faster than
state-of-the-art implementations.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Languages

Keywords: Image Processing, Compilers, Performance

Links: DL PDF WEB CODE

1 Introduction

Computational photography algorithms require highly efficient
implementations to be used in practice, especially on power-
constrained mobile devices. This is not a simple matter of pro-
gramming in a low-level language like C. The performance differ-
ence between naive C and highly optimized C is often an order of
magnitude. Unfortunately, optimization usually comes at the cost
of programmer pain and code complexity, as computation must be
reorganized to achieve memory efficiency and parallelism.

(a) Clean C++ : 9.94 ms per megapixel

void blur(const Image &in, Image &blurred) {
Image tmp(in.width(), in.height());

for (int y = 0; y < in.height(); y++)

for (int x = 0; x < in.width(); x++)

tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

for (int y = 0; y < in.height(); y++)

for (int x = 0; x < in.width(); x++)

blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

}

(b) Fast C++ (for x86) : 0.90 ms per megapixel

void fast_blur(const Image &in, Image &blurred) {
m128i one_third = _mm_set1_epi16(21846);

#pragma omp parallel for

for (int yTile = 0; yTile < in.height(); yTile += 32) {
m128i a, b, c, sum, avg;

m128i tmp[(256/8)*(32+2)];

for (int xTile = 0; xTile < in.width(); xTile += 256) {
m128i *tmpPtr = tmp;

for (int y = -1; y < 32+1; y++) {
const uint16_t *inPtr = &(in(xTile, yTile+y));

for (int x = 0; x < 256; x += 8) {
a = _mm_loadu_si128((m128i*)(inPtr-1));

b = _mm_loadu_si128((m128i*)(inPtr+1));

c = _mm_load_si128((m128i*)(inPtr));

sum = _mm_add_epi16(_mm_add_epi16(a, b), c);

avg = _mm_mulhi_epi16(sum, one_third);

_mm_store_si128(tmpPtr++, avg);

inPtr += 8;

}}
tmpPtr = tmp;

for (int y = 0; y < 32; y++) {
m128i *outPtr = (m128i *)(&(blurred(xTile, yTile+y)));

for (int x = 0; x < 256; x += 8) {
a = _mm_load_si128(tmpPtr+(2*256)/8);

b = _mm_load_si128(tmpPtr+256/8);

c = _mm_load_si128(tmpPtr++);

sum = _mm_add_epi16(_mm_add_epi16(a, b), c);

avg = _mm_mulhi_epi16(sum, one_third);

_mm_store_si128(outPtr++, avg);

}}}}}

(c) Halide : 0.90 ms per megapixel

Func halide_blur(Func in) {
Func tmp, blurred;

Var x, y, xi, yi;

// The algorithm

tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

// The schedule

blurred.tile(x, y, xi, yi, 256, 32)

.vectorize(xi, 8).parallel(y);

tmp.chunk(x).vectorize(x, 8);

return blurred;

}

Figure 1: The code at the top computes a 3⇥3 box filter using the
composition of a 1⇥3 and a 3⇥1 box filter (a). Using vectorization,
multithreading, tiling, and fusion, we can make this algorithm more
than 10⇥ faster on a quad-core x86 CPU (b). However, in doing so
we’ve lost readability and portability. Our compiler separates the
algorithm description from its schedule, achieving the same perfor-
mance without making the same sacrifices (c). For the full details
about how this test was carried out, see the supplemental material.

ACM Transactions on Graphics, Vol. 31, No. 4, Article 32, Publication Date: July 2012

Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines. Ragan-Kelley et al. (2012)

Clean C++: 9.94 ms per megapixel Fast x86 C++: 0.9 ms per megapixel

work
efficiency locality

parallelism

14

Parallelism in matrix-vector multiplication

for (int i=0; i<m; i++)
 for (int j=0; j<n; j++)
 y[i] += A[i*n+j] * x[j];x=

#pragma omp parallel for
for (int i=0; i<m; i++)
 for (int j=0; j<n; j++)
 y[i] += A[i*n+j] * x[j];

x=

#pragma omp parallel for
for (int k=0; k<m; k+=4)
 for (int i=k; i<k+4; i++)
 for (int j=0; j<n; j++)
 y[i] += A[i*n+j] * x[j];

x=

for (int j=0; j<n; j++)
 for (int i=0; i<m; i++)
 y[i] += A[i*n+j] * x[j];x=

#pragma omp parallel for
for (int j=0; j<n; j++)
 for (int i=0; i<m; i++)
 #pragma omp atomic
 y[i] += A[i*n+j] * x[j];

x=

15

Cache Hierarchies with typical latencies
CPU

L1 Cache

L3 Cache

CPU

L1 Cache

CPU

L1 Cache

L2 Cache L2 Cache L2 Cache

Main Memory

Solid State Disks

4 cycles

10 cycles

25 cycles

200 cycles

1-3 ms

16

Spatial locality

Data Layout Order
a

0 1 2 3 4 5 6 7

Cache

Memory

CPU … = a[4];

a[4]

a[4] a
4 5 6 7

a
4

Avoid jumping around the address space

by not iterating along the data layout

Iteration Order

17

Temporal locality in matrix-matrix multiplication

x=

if matrix is large, row will have left the cache

x=

Aij = BikCkj

2x2 matrix multiply,

where the operations are

4x4 matrix multiplies

shorter reuse distance

18

Buying producer-consumer locality with redundant work in fused stencils

for (int j=0; j<4; i++)
 tmp[j] = (input[j-1] + input[j] + input[j+1]) / 3;

for (int i=1; i<3; i++)
 output[i] = (tmp[i-1] + tmp[i] + tmp[i+1]) / 3;

input

tmp

output

input

output

8 additions and

4 divides

4 additions and

2 divides

16 additions and

8 divides

Stencil loops

for (int i=1; i<3; i++)
 output[i] = ((input[i-2] + input[i-1] + input[i]) / 3
 + (input[i-1] + input[i] + input[i+1]) / 3
 + (input[i] + input[i+1] + input[i+2]) / 3
) / 3;

Fused stencil loops

19

Separation of algorithm from schedules

Algorithm

Language

Scheduling

Language

Compiler

CPUs

DSAs

GPUs

This idea was most clearly demonstrated in the Halide system

20

General Principle: Separation of policy and mechanism

Separate by a clean API/language to:

• Solve one complex problem at a time

• Experiment with automatic policy systems
without reimplementing the mechanism

• Allow users to override default decisions
with their own

• Policy tends to evolve faster than
mechanism

Policy is deciding what to do

(decide what transformations to apply)

Mechanism is doing it

(generate code)

The Nucleus of a Multiprogramming System. P. Brinch Hansen (1970)

21

Optimization strategies in compilers

1. Greedy or heuristic rewrites

2. Integer-linear programming

3. Beam search combined with ML

4. Autotuning with hill climbing, genetic algorithms, etc.

5. Or pick your favorite optimization strategy and

• Define an optimization space and a cost function

• Implement a search procedure

22

Example: Halide

ACM Reference Format
Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S., Durand, F. 2012. Decoupling Algorithms
from Schedules for Easy Optimization of Image Processing Pipelines. ACM Trans. Graph. 31 4, Article 32
(July 2012), 12 pages. DOI = 10.1145/2185520.2185528 http://doi.acm.org/10.1145/2185520.2185528.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2012 ACM 0730-0301/2012/08-ART32 $15.00 DOI 10.1145/2185520.2185528
http://doi.acm.org/10.1145/2185520.2185528

Decoupling Algorithms from Schedules
for Easy Optimization of Image Processing Pipelines

Jonathan Ragan-Kelley⇤ Andrew Adams⇤ Sylvain Paris† Marc Levoy‡ Saman Amarasinghe⇤ Frédo Durand⇤

⇤MIT CSAIL †Adobe ‡Stanford University

Abstract
Using existing programming tools, writing high-performance im-
age processing code requires sacrificing readability, portability, and
modularity. We argue that this is a consequence of conflating what
computations define the algorithm, with decisions about storage
and the order of computation. We refer to these latter two concerns
as the schedule, including choices of tiling, fusion, recomputation
vs. storage, vectorization, and parallelism.

We propose a representation for feed-forward imaging pipelines
that separates the algorithm from its schedule, enabling high-
performance without sacrificing code clarity. This decoupling sim-
plifies the algorithm specification: images and intermediate buffers
become functions over an infinite integer domain, with no explicit
storage or boundary conditions. Imaging pipelines are compo-
sitions of functions. Programmers separately specify scheduling
strategies for the various functions composing the algorithm, which
allows them to efficiently explore different optimizations without
changing the algorithmic code.

We demonstrate the power of this representation by expressing
a range of recent image processing applications in an embedded
domain specific language called Halide, and compiling them for
ARM, x86, and GPUs. Our compiler targets SIMD units, multiple
cores, and complex memory hierarchies. We demonstrate that it
can handle algorithms such as a camera raw pipeline, the bilateral
grid, fast local Laplacian filtering, and image segmentation. The al-
gorithms expressed in our language are both shorter and faster than
state-of-the-art implementations.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Languages

Keywords: Image Processing, Compilers, Performance

Links: DL PDF WEB CODE

1 Introduction

Computational photography algorithms require highly efficient
implementations to be used in practice, especially on power-
constrained mobile devices. This is not a simple matter of pro-
gramming in a low-level language like C. The performance differ-
ence between naive C and highly optimized C is often an order of
magnitude. Unfortunately, optimization usually comes at the cost
of programmer pain and code complexity, as computation must be
reorganized to achieve memory efficiency and parallelism.

(a) Clean C++ : 9.94 ms per megapixel

void blur(const Image &in, Image &blurred) {
Image tmp(in.width(), in.height());

for (int y = 0; y < in.height(); y++)

for (int x = 0; x < in.width(); x++)

tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

for (int y = 0; y < in.height(); y++)

for (int x = 0; x < in.width(); x++)

blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

}

(b) Fast C++ (for x86) : 0.90 ms per megapixel

void fast_blur(const Image &in, Image &blurred) {
m128i one_third = _mm_set1_epi16(21846);

#pragma omp parallel for

for (int yTile = 0; yTile < in.height(); yTile += 32) {
m128i a, b, c, sum, avg;

m128i tmp[(256/8)*(32+2)];

for (int xTile = 0; xTile < in.width(); xTile += 256) {
m128i *tmpPtr = tmp;

for (int y = -1; y < 32+1; y++) {
const uint16_t *inPtr = &(in(xTile, yTile+y));

for (int x = 0; x < 256; x += 8) {
a = _mm_loadu_si128((m128i*)(inPtr-1));

b = _mm_loadu_si128((m128i*)(inPtr+1));

c = _mm_load_si128((m128i*)(inPtr));

sum = _mm_add_epi16(_mm_add_epi16(a, b), c);

avg = _mm_mulhi_epi16(sum, one_third);

_mm_store_si128(tmpPtr++, avg);

inPtr += 8;

}}
tmpPtr = tmp;

for (int y = 0; y < 32; y++) {
m128i *outPtr = (m128i *)(&(blurred(xTile, yTile+y)));

for (int x = 0; x < 256; x += 8) {
a = _mm_load_si128(tmpPtr+(2*256)/8);

b = _mm_load_si128(tmpPtr+256/8);

c = _mm_load_si128(tmpPtr++);

sum = _mm_add_epi16(_mm_add_epi16(a, b), c);

avg = _mm_mulhi_epi16(sum, one_third);

_mm_store_si128(outPtr++, avg);

}}}}}

(c) Halide : 0.90 ms per megapixel

Func halide_blur(Func in) {
Func tmp, blurred;

Var x, y, xi, yi;

// The algorithm

tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

// The schedule

blurred.tile(x, y, xi, yi, 256, 32)

.vectorize(xi, 8).parallel(y);

tmp.chunk(x).vectorize(x, 8);

return blurred;

}

Figure 1: The code at the top computes a 3⇥3 box filter using the
composition of a 1⇥3 and a 3⇥1 box filter (a). Using vectorization,
multithreading, tiling, and fusion, we can make this algorithm more
than 10⇥ faster on a quad-core x86 CPU (b). However, in doing so
we’ve lost readability and portability. Our compiler separates the
algorithm description from its schedule, achieving the same perfor-
mance without making the same sacrifices (c). For the full details
about how this test was carried out, see the supplemental material.

ACM Transactions on Graphics, Vol. 31, No. 4, Article 32, Publication Date: July 2012

Several auto-schedulers have been developed; a recent autoscheduler uses beam-search

Decoupling Algorithms from Schedules for
Easy Optimization of Image Processing

Pipelines. Ragan-Kelley et al. (2012)

23

Separation of algorithm from schedules

Algorithm

Language

Scheduling

Language

Compiler

CPUs

DSAs

GPUs

This idea was most clearly demonstrated in the Halide system

24

Algorithm

Language

Data Representation
Language

Scheduling

Language

Compiler

CPUs

DSAs
Most of HW retargeting is about changing

schedules and data representations

Next up: separation of Algorithm, Schedule, and Data Representation

GPUs

