
1

Lecture 6 — Sparse Programming Systems

Stanford CS343D (Winter 2024)
Fred Kjolstad

2

Lecture 4
Collection-Oriented

Languages

Lecture 7
Iteration Model I

Lecture 8
Iteration Model II

Lecture 6
Sparse Programming

Systems

Lecture 5
Dense Programming

Systems

Lecture 2
Domain-Specific

Compilers

Lecture 3
Building DSLs

3

Terminology: Regular and Irregular

Fully Connected System Regular System Irregular System

4

Three classes of irregular systems

Road Networks Fractional Sparsity Power Law Graphs

5

How sparse is graph/relational data? Often asymptotically sparse.

Power-law graphs

Conditioned Meshes
Assume an average degree of 150 (e.g., 150 friends)

Each matrix row then has 150 nonzeros

At 10,000 rows: nonzeros
150 ⋅ 10,000

10,0002
= 1.5 %

At 100,000 rows: nonzeros
150 ⋅ 100,000

100,0002
= 0.15 %

Matrix components: O(n2)
Nonzeros: O(n)

Fraction of nonzeros: O(1/n)

6

Terminology: Dense and Sparse

Dense loop iteration space

for (int i = 0; i < m; i++) {
 for (int j = 0; j < n; j++) {
 y[i] += A[i*n+j] * x[j];
 }
}

y = Ax

Sparse loop iteration space

 for (int i = 0; i < m; i++) {
 for (int pA = A2_pos[i]; pA < A_pos[i+1]; pA++) {
 int j = A_crd[pA];
 y[i] += A[pA] * x[j];
 }
 }

y = Ax

7

Three sparse applications areas

i

b1 c1\

8i bi \ ci

i 2 b1 \ c1

i

j

k

B1

B2

B3

C1

C2

C3

[

[

[

8i8j Bi jk [Ci jk

i 2 B1 [C1

j 2 B2 [C2

k 2 B3 [C3

i

j

B1

B2

C1

C2

D1

D2

[

[

\

\

8i8j (Bi j [Ci j) \ Di j

i 2 (B1 [C1) \ D1

j 2 (B2 [C2) \ D2

i

j

B1

B2 c1\

8i8j Bi j \ c j

i 2 B1 \ Ui
j 2 B2 \ c1

i

b1

8i � [bi

i 2 Ui \ b1

i

k

j

B1

B2 C1

C2

\

8i8k8j Bik \Ck j

i 2 B1 \ Ui
k 2 B2 \C1

j 2 Uj \C2

i

k

l

j

B1

B2

B3

C1

C2

D1

D2

\

\

\

8i8k8l8j Bikl \Ck j \ Dl j

i 2 B1 \ Ui \ Ui
k 2 B2 \C1 \ Uk
l 2 B3 \ Ul \ D1

j 2 Uj \C2 \ D2

i

j

B1

B2 c1

d1[

\

8i (8j Bi j \ c j) [di

i 2 (B1 \ Ui) [d1

j 2 B2 \ c1

Figure 3-10: Eight sparse iteration graphs with index variable iteration domains computed from the iteration graph’s symbolic
expression for each index variable.

tension to the iteration space algebra where iteration over dimension
nodes are represented as forall expressions that are nested according
to the tree embedding. This extension gives the iteration graph ex-
pressions an operational semantics (iterate through dimensions in the
given order), whereas iteration space expressions have declarative se-
mantics (a point is in the iteration space if it is in the set described
by the expression). The inner expressions are syntactically the same
in the two algebras, but are in the iteration graph expressions reinter-
preted so that indexed operands describe paths and operators describe
how the coordinate tree levels should be combined.

Figure 3-10 provides eight examples of iteration graphs to help

35

i

b1 c1\

8i bi \ ci

i 2 b1 \ c1

i

j

k

B1

B2

B3

C1

C2

C3

[

[

[

8i8j Bi jk [Ci jk

i 2 B1 [C1

j 2 B2 [C2

k 2 B3 [C3

i

j

B1

B2

C1

C2

D1

D2

[

[

\

\

8i8j (Bi j [Ci j) \ Di j

i 2 (B1 [C1) \ D1

j 2 (B2 [C2) \ D2

i

j

B1

B2 c1\

8i8j Bi j \ c j

i 2 B1 \ Ui
j 2 B2 \ c1

i

b1

8i � [bi

i 2 Ui \ b1

i

k

j

B1

B2 C1

C2

\

8i8k8j Bik \Ck j

i 2 B1 \ Ui
k 2 B2 \C1

j 2 Uj \C2

i

k

l

j

B1

B2

B3

C1

C2

D1

D2

\

\

\

8i8k8l8j Bikl \Ck j \ Dl j

i 2 B1 \ Ui \ Ui
k 2 B2 \C1 \ Uk
l 2 B3 \ Ul \ D1

j 2 Uj \C2 \ D2

i

j

B1

B2 c1

d1[

\

8i (8j Bi j \ c j) [di

i 2 (B1 \ Ui) [d1

j 2 B2 \ c1

Figure 3-10: Eight sparse iteration graphs with index variable iteration domains computed from the iteration graph’s symbolic
expression for each index variable.

tension to the iteration space algebra where iteration over dimension
nodes are represented as forall expressions that are nested according
to the tree embedding. This extension gives the iteration graph ex-
pressions an operational semantics (iterate through dimensions in the
given order), whereas iteration space expressions have declarative se-
mantics (a point is in the iteration space if it is in the set described
by the expression). The inner expressions are syntactically the same
in the two algebras, but are in the iteration graph expressions reinter-
preted so that indexed operands describe paths and operators describe
how the coordinate tree levels should be combined.

Figure 3-10 provides eight examples of iteration graphs to help

35

i

b1 c1\

8i bi \ ci

i 2 b1 \ c1

i

j

k

B1

B2

B3

C1

C2

C3

[

[

[

8i8j Bi jk [Ci jk

i 2 B1 [C1

j 2 B2 [C2

k 2 B3 [C3

i

j

B1

B2

C1

C2

D1

D2

[

[

\

\

8i8j (Bi j [Ci j) \ Di j

i 2 (B1 [C1) \ D1

j 2 (B2 [C2) \ D2

i

j

B1

B2 c1\

8i8j Bi j \ c j

i 2 B1 \ Ui
j 2 B2 \ c1

i

b1

8i � [bi

i 2 Ui \ b1

i

k

j

B1

B2 C1

C2

\

8i8k8j Bik \Ck j

i 2 B1 \ Ui
k 2 B2 \C1

j 2 Uj \C2

i

k

l

j

B1

B2

B3

C1

C2

D1

D2

\

\

\

8i8k8l8j Bikl \Ck j \ Dl j

i 2 B1 \ Ui \ Ui
k 2 B2 \C1 \ Uk
l 2 B3 \ Ul \ D1

j 2 Uj \C2 \ D2

i

j

B1

B2 c1

d1[

\

8i (8j Bi j \ c j) [di

i 2 (B1 \ Ui) [d1

j 2 B2 \ c1

Figure 3-10: Eight sparse iteration graphs with index variable iteration domains computed from the iteration graph’s symbolic
expression for each index variable.

tension to the iteration space algebra where iteration over dimension
nodes are represented as forall expressions that are nested according
to the tree embedding. This extension gives the iteration graph ex-
pressions an operational semantics (iterate through dimensions in the
given order), whereas iteration space expressions have declarative se-
mantics (a point is in the iteration space if it is in the set described
by the expression). The inner expressions are syntactically the same
in the two algebras, but are in the iteration graph expressions reinter-
preted so that indexed operands describe paths and operators describe
how the coordinate tree levels should be combined.

Figure 3-10 provides eight examples of iteration graphs to help

35

1

2

4

3

6

5

7

Names City Age
Peter Boston 54
Mary San Fransisco 35
Paul New York 23

Adam Seattle 84
Hilde Boston 19
Bob Chicago 76
Sam Portland 32

Angela Los Angeles 62

Tensors

Relations

Graphs

Nonzeros are a subset of the
cartesian combination of sets

A relation is a subset of the
cartesian combination of sets

Sparse Iteration Spaces

Graph edges are a subset of the
cartesian combination of sets

Graphs

Relations

Tensor

Filters

Solves
Dijkstra’s

Algorithm

8

Relations, graphs, and tensors share a lot of structure but
are specialized for different purposes

1

2

4

3

6

5

7

Names City Age
Peter Boston 54
Mary San Fransisco 35
Paul New York 23

Adam Seattle 84
Hilde Boston 19
Bob Chicago 76
Sam Portland 32

Angela Los Angeles 62

Tensors

Relations

Graphs

Combine data to
form systems

Global operations
on systems

Local operations
on systems

Triangle

Counting

Pagerank

9

Triangle counting on graphs, relations, and tensors

3
1

6
5

8 9

7

4

2

3 4

2

On graphs On relations On tensors

where Z denotes an inner (intersecting) join, A, B, andC are sets, and
Q , R, S , andT are relations. Moreover, Godsil and Royle [57, Corollary
8.1.3] show how to count triangles using linear algebra operations, by
dividing by 6 the trace of the cube of the adjacency matrix of a graph50: 50 The intuition is that eachmatrix mul-

tiplication does one step of a breadth-
�rst search from each vertex; hence,
in two steps, you get back to yourself
through triangles. The number of trian-
gles each vertex� takes part in is half of
A
3
�� because one can traverse each tri-

angle in two directions from each ver-
tex. By counting the number of tri-
angles of each vertex, we obtain three
times the number of total triangles be-
cause three vertices partake in each tri-
angle. Thus, the number of triangles is
1
3
1
2 trace(A3) = 1

6 trace(A3).

1
6
trace(A3).

Finally, Azad et al. [10] show that triangle counting can be further
optimized by computing and then closing wedges. They �rst direct
the graph by multiplying the lower and upper triangular parts of the
adjacency matrix. Then, they element-wise multiply the result by the
entire adjacency matrix:

A � (LU),
where � is an element-wise multiplication, L is the lower triangular
part of A, andU is its upper triangular part.

Because of the underlying similarities between their operations
and because each abstraction operates on sets and their relationships, I
believe sparse iteration theory can be generalized to support the union
of sparse array and tensor operations, relational algebra, and many
graph operations. This approach would make it possible to not only
individually compile the operations in each abstraction but to also
compile algorithms that transition between them.51 The resulting uni- 51 The Simit programming lan-

guage [77] that I worked on during
graduate school, but which is not
covered in this dissertation, is a �rst
step in this direction. It lets users
write programs that transition between
graph and linear algebra abstractions.
It demonstrated we can get perfor-
mance, productivity, and portability
across abstractions by introducing new
programming language constructs to
express these transitions.

�ed sparse iteration theory would thus provide us with a compiler ap-
proach for sparse computation in general.

130

Q△ = E(A, B) ⋈ E(B, C) ⋈ E(C, A)

10

Some important developments in compilers and
programming languages for sparse compilers

• 1960s: Development of libraries for sparse linear algebra

• 1970s: Relational algebra and the first relational database
management systems: System R and INGRES

• 1980s: SQL is developed and has commercial success

• 1990s: Matlab gets sparse matrices and some dense to sparse linear
algebra compilers are developed

• 2000s: Sparse linear algebra libraries for supercomputers and GPUs

• 2010s: Graph processing libraries become popular, compilers for
databases, and compilers for sparse tensor algebra

11

Parallelism, locality, work efficiency still matters,

but the key is choosing efficient data structures

work
efficiency locality

parallelism

Harry Sally George Mary Rita

CS EE CS ME CS

data structures

work
efficiency locality

parallelism

Harry CS

Sally EE

George CS

Mary ME

Rita CS

Harry SallyGeorge MaryRita

CS EE ME

12

Sparse data structures in graphs, tensors, and relations

encode coordinates in a sparse iteration space

Values may be attached to these coordinates: e.g., nonzero values, edge attributes

Tensor (nonzeros)

(0,1)

(2,3) (0,5)

(5,5) (7,5) (Rita,CS)

Relation (rows)

(Harry,CS)
(Sally,EE)

(George,CS)
(Mary,ME)

Graph (edges)

(v1,v5)
(v4,v3)

(v5,v3)

(v3,v1)
(v3,v5)

13

Hierarchically compressed data structures (tries)

reduce the number of values that need to be stored

Compressed Sparse Rows (CSR)

A B C D E F
0 1 2 3 4 5 6 7 8 9 10 11

row(3) = ???
col(3) = ???

0 1 2 3 4 5

F
C D E

A B
0 1 2 3

0

1

2

0 2 5 60 0 1 1 1 2

0 2 1 2 3 3

rows

cols

pos

Coordinate
0 1 2 3

Duplicates

14

Iteration over sparse iteration spaces imply coiteration
over sparse data structures

0 2 3

30 40 50 7010 80 20 60

0 3 5

20 1 2 3

8pos

cols

B

vals

0 2 3

0 1 3

C

2 91

pos

cols

vals

A = B + CLinear Algebra:

Aij = Bij + CijTensor Index Notation:

j

i ∪

union because x + 0 = x

coiterate

Bij ∪ CijIteration Space:

15

Merged coiteration

3

b c

Coordinate Space

1 2

4

5

6

7

0
b c

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

∩∪=

a

×

0

1

2

3

4

5

6

7

ai = bi ci

x ⋅ 0 = 0

ai = bi + ci

16

Merged coiteration code
Intersection b ∩ c

int pb = b_pos[0];
int pc = c_pos[0];
while (pb < b_pos[1] && pc < c_pos[1]) {
 int ib = b_crd[pb];
 int ic = c_crd[pc];
 int i = min(ib, ic);
 if (ib == i && ic == i) {
 a[i] = b[pb] * c[pc];
 }
 if (ib == i) pb++;
 if (ic == i) pc++;
}

int pb = b_pos[0];
int pc = c_pos[0];
while (pb < b_pos[1] && pc < c_pos[1]) {
 int ib = b_crd[pb];
 int ic = c_crd[pc];
 int i = min(ib, ic);
 if (ib == i && ic == i) {
 a[i] = b[pb] + c[pc];
 }
 else if (ib == i) {
 a[i] = b[pb];
 }
 else {
 a[i] = c[pc];
 }
 if (ib == i) pb++;
 if (ic == i) pc++;
}

while (pb < b_pos[1]) {
 int i = b_crd[pb];
 a[i] = b[pb++];
}

while (pc < c_pos[1]) {
 int i = c_crd[pc];
 a[i] = c[pc++];
}

Union b ∪ c

b c b c

17

Iterate-and-locate examples (intersection)

a = ∑
i

bici

for (int pb = b_pos[0]; pb < b_pos[1]; pb ++) {
 int i = b_crd[pb];
 a += b[pb] * c[i];
}

cb

iterate over b locate from c

18

Separation of Algorithm, Data Representation, and Schedule

Algorithm

Language

Data Representation
Language

Scheduling

Language

Compiler

CPUs

DSAs
Most of HW retargeting is about changing

schedules and data representations

GPUs

