
Lecture 1 — Introduction

Stanford CS343D (Winter 2024)
Fred Kjolstad

2

Course staff

Fred Kjolstad AJ Root

3

Administria

• Syllabus at https://cs343d.github.io

• Discussion will happen through Ed in Canvas

• Office Hours

• Fred: Friday 11-12noon in Gates 486

• AJ: Wednesday 3-4pm in Gates 4A common area

https://cs343d.github.io

4

Goals of the Course

• Introduce you to domain-specific and collection-
oriented programming languages from the past

• Introduce you to compiler techniques to get good
performance for dense and sparse applications

• Bring you to one of the frontiers of PL and compiler
research

• Get you thinking about abstractions and semantics

• “What are the three biggest ideas in computer
science? Abstraction, abstraction, abstraction.”
-Paul Hudak

5

Expectations

• Read papers and engage in class (25%)

• ~2 readings per class

• Classes will have a lecture followed by paper discussion

• Everyone will get a chance to lead a discussion

• Two assignments (20%)

• MiniAPL

• Sparse Coiteration Code Generation

• Essay (15%)

• Project (40%)

6

It is all about performance and productivity

C

MPI
CUDA

Matlab
NumPy

We want to be here

performance

productivity

7

Performance translates to less time and less energy

Data centers Self-driving cars

Tensor Processing Unit Cell-phone batteries

Supercomputers

8

Eras of Computing

Simulation

Interaction

 (1945–1965)

Data processing (1965–1984)

Personal Computing (1984–1995)

Communication (1995–2018)

9

Modern applications are performance hungry

Machine Learning

Convolutional Networks

Neural Networks

Dense weights Block-sparse weights Corresponding sparsity pattern

0 0 1 1 1 1 1 1

1 1 1 0 0 1 1 0
1 0 0 0 0 0 1 1
1 1 1 1 0 0 1 1

1 0 1 1
§

1 1 1 1
0 1 0 0 0 0 0 0

1 1 1 0 1 1 0 0
1 0 0 0 0 1 1 1

Figure 1: Visualization of random dense and random block-sparse weight matrices, where white
indicates a weight of zero. Our new kernels allow efficient usage of block-sparse weights in fully
connected and convolutional layers, as illustrated in the middle figure. For convolutional layers, the
kernels allow for sparsity in input and output feature dimensions; the connectivity is still dense in the
spatial dimensions. The sparsity is defined at the level of blocks (right figure), with block size of at
least 8⇥ 8. At the block level, the sparsity pattern is completely configurable. Since the kernels skip
computations of blocks that are zero, the computational cost is only proportional to the number of
weights, not the number of input/output features.

Figure 2: Dense linear layers (left) can be replaced with layers that are sparse and wider (center) or
sparse and deeper (right) while approximately retaining computational cost and memory cost. Note
these costs are, in principle, proportional to the number of non-zero weights (edges). The shown
networks have an equal number of edges. However, the sparse and wide network has the potential
advantage of a larger information bandwidth, while the deeper network has the potential benefit of
fitting nonlinear functions.

Block-sparsity unlocks various research directions (see section 6). One application we explore in
experiments is the widening or deepening of neural networks, while increasing sparsity, such that
the computational cost remains approximately equal as explained in figure 2. In experiments we
have only scratched the surface of the applications of block-sparse linear operations; by releasing our
kernels in the open, we aim to spur further advancement in model and algorithm design.

2 Capabilities

The two main components of this release are a block-sparse matrix multiplication kernel and a
block-sparse convolution kernel. Both are wrapped in Tensorflow [Abadi et al., 2016] ops for easy
use and the kernels are straightforward to integrate into other frameworks, such as PyTorch.

Both kernels support an arbitrary block size and are optimized for 8x8, 16x16, and 32x32 block sizes.
The matrix multiplication kernel supports an arbitrary block layout which is specified via a masking
matrix. In addition, the feature axis is configurable. The convolution kernel supports non-contiguous
input/output feature blocks of any uniform or non-uniform size specified via a configuration format
(see API) though multiples of 32x32 perform best. Arbitrary dense spatial filter sizes are supported in
addition to dilation, striding, padding, and edge biasing.

2

Graph Convolutional Network

Simulation and Optimization

Virus Modelling

Graphics Simulations

Robotics

Computational Biology

Data Analytics

Recommender Systems

Social Networks

10

Modern hardware is heterogeneous and programming it is hard

11

Hardware in the Clouds

TPUInferentia
Trainium

FPGAs

Graviton

12

A lot of industry activity

https://basicmi.github.io/AI-Chip/

The Road to Point Reyes
Lucasfilm 1984
R.E.Y.E.S = Renders Everything You Ever Saw

surface	corrode(float	Ks=0.4,	Ka=0.1,	rough=0.25)	{	

		float	i,	freq=1,	turb=0;	

		//	compute	fractal	texture	

		for(i=0;	i<6;	i++)	{	

				turb+=1/freq*noise(freq*P);	

				freq*=2;	

		}	

		//	perturb	surface	

		P	-=	turb	*	normalize(N);	

		N	=	faceforward(normalize(calculatenormal(P)));	

		//	compute	reflection	and	final	color	

		Ci	=	Cs*(Ka*ambient()+Ks*specular(N,I,rough));	

}	

Little Languages (DSLs)

Jon Bentley, CACM 29(8), 1986

Defining “little” is harder; it might imply that the
first-time user can use this system in an hour or
master the language in a day, or perhaps the
first implementation took just a few days. In any
case, a little language is specialized to a
particular problem domain and does not include
many features found in conventional languages.

UNIX "DSLs"

bash, csh - shell programming

awk - processing strings

sed - regular expressions

troff, pic, tbl, eqn, …

printf formatting

…

Programming Languages

Performance

Productivity Generality

Domain-Specific Languages

Performance

Productivity Generality

Graphics Libraries

glPerspective(45.0);	
for(…)	{	
				glTranslate(1.0,2.0,3.0);	
				glBegin(GL_TRIANGLES);	
								glVertex(…);	
								glVertex(…);	
								…	
				glEnd();	
}	
glSwapBuffers();

OpenGL “Grammar”

<Scene>	=	<BeginFrame>	<Camera>	<World>	
<EndFrame>	

<Camera>	=	glMatrixMode(GL_PROJECTION)	
<View>	
<View>	=	glPerspective	|	glOrtho	

<World>	=	<Objects>*	
<Object>	=	<Transforms>*	<Geometry>	
<Transforms>	=	glTranslatef	|	glRotatef	|	…	
<Geometry>	=	glBegin	<Vertices>	glEnd	
<Vertices>	=	[glColor]	[glNormal]	glVertex

Advantages

Productivity

■ Graphics library is easy to use

Portability

■ Runs on wide range of GPUs

Performance

■ Runs in parallel

Restrictions

■ Vertices/Fragments are independent

■ Rasterization can be done in hardware

■ Textures are read-only; texture filtering hw

■ Specialized scheduler for pipeline

■ …

■ Allows for super-optimized implementations

Abstraction is about
restrictions ,

in order to get
useful properties

Advantages

Productivity

Portability

Performance

Encourage innovation

■ Allows vendors to radically optimize hardware
architecture to achieve efficiency

■ Allows vendors to introduce new low-level
programming models and abstractions

Domain-Specific Languages

Performance

Productivity Generality

Definition: Domain-Specific

Definition: A language or library that exploits
domain knowledge for productivity and
performance

Widely used in many application areas

■ matlab / R

■ SQL / map-reduce / Microsoft’s LINQ

■ TensorFlow, pytorch

Domain-Specific Languages

Performance

Productivity Generality

Why DSLs Work

Advantages

■ Add the semantics of the domain

■ High-level program transformations

■ Restrict programming language

■ Less-general computations

■ Guarantee static analysis

■ Known parallelization strategies

■ Someone has shown how to robustly do it

=> Tractable

TSMC 7nm
6.9B transistors

A New Golden Age for Computer
Architecture: Domain-Specific
Hardware/Software Co-Design

John Hennessy David Patterson

2017 Turing Award

Large efficiency gains with domain-specific architectures

Google
Tensor Processing Unit

Domain-Specific Architectures

NVIDIA
Turing Architecture

32

Collection-Oriented Languages

A collection-oriented programming model provides collective
operations on some collection/abstract data structure

Lists

Lisp M58

Sets

SETL S70

Nested Sequences

NESL B94

Relations

Relational Algebra C70,

Arrays

APL I62

Grids

Sejits S09, Halide

Matrices and Tensors

Matlab M79, taco K17

Graphs

GraphLab L10

Vectors

Vector Model B90

Meshes

Liszt D11

Modern Domain-Specific Languages/Compilers

34

Lecture 4
Collection-Oriented

Languages

Lecture 7
Iteration Model I

Lecture 8
Iteration Model II

Lecture 6
Sparse Programming

Systems

Lecture 5
Dense Programming

Systems

Lecture 2
Domain-Specific

Compilers

Lecture 3
Building DSLs

