
1

Lecture 4 — Collection-Oriented Languages

Stanford CS343D (Winter 2025)
Fred Kjolstad

2

Lecture 4
Collection-Oriented

Languages

Lecture 7
Iteration Model I

Lecture 8
Iteration Model II

Lecture 6
Sparse Programming

Systems

Lecture 5
Dense Programming

Systems

Lecture 2
Domain-Specific

Compilers

Lecture 3
Building DSLs

3

Languages are tools for thought

“By relieving the brain of all unnecessary work, a good notation
sets it free to concentrate on the more advanced problems”
 — Alfred N. Whitehead

4

Collection-Oriented languages are an important subclass
of DSLs as discussed in this course

DSLs

Collection-Oriented
Languages

4

Collection-Oriented languages are an important subclass
of DSLs as discussed in this course

DSLs

Collection-Oriented
Languages

Economy of scale

in notation and execution

How many operations?

C = A ./ B

<latexit sha1_base64="Du7Mnmb8RIVyc5l9vPepFtT+UAo=">AAAENnicdZPLjtMwFIY9Ey5DubQDSzYWFRKLMIrb9LZAGjoLWA6IzozUVpXjuK1Vx4lsh6GK8iRs4R14FTbsEFseASdNUZkaK5GOj7//+JxfcpBwprTnfT84dG7dvnP36F7t/oOHj+qN48cXKk4loSMS81heBVhRzgQdaaY5vUokxVHA6WWwOivOLz9SqVgsPuh1QqcRXgg2ZwRrk5o16mfwFXwNJ0F8rRmFw1mj6Z145YL7AaqCJqjW+ezYqU/CmKQRFZpwrNQYeYmeZlhqRjjNa5NU0QSTFV7QsQkFjqiaZmXnOXxuMiGcx9L8QsMyu6vIcKTUOgoMGWG9VDfPiqTtbJzqeX+aMZGkmgqyuWiecqhjWNgAQyYp0XxtAkwkM71CssQSE23MqtUmIZ0bR8t+Mo1J/DLgKc2z92+Gedbtucjvuy2/l1vAEMvVDtzuuIOui3odG8vZYql3YNRyEfJNZd9GLySloiI7fRe1um7bWjZJZcL/1kQGHZiabRsaSywWW7TVQWYy30Ve134/Xldkr+uWn8EEvSZxFGERZpMCK8cZo6nZ0U96z8Emyi2izWg2VTW0XVYNatNtPbALq7Ftwq0j/2vUeGDvszCnEJknhG4+mP3gonWC/JPBO795Oqwe0xF4Cp6BFwCBHjgFb8E5GAECUvAZfAFfnW/OD+en82uDHh5Umifgn+X8/gNhamiA</latexit>

c = Ab

<latexit sha1_base64="+cVlodGCgtb3/NCdxf1qDk+br4k=">AAAEK3icdZPLjtMwFIY9Ey5DucwMLNlEVEgsQhW3adMukIZhAcsB0c5IbTVyHCf11HEi2wGqKO/AFt6Bp2EFYst74KQpKlNjJdLx8fcfn/NLDjJGpXLdH3v71o2bt24f3GndvXf/weHR8cOJTHOByRinLBUXAZKEUU7GiipGLjJBUBIwch4sX1Xn5x+IkDTl79UqI/MExZxGFCOlUxNsv7BfBpdHbbfj1sveDWATtEGzzi6PrcNZmOI8IVxhhqScQjdT8wIJRTEjZWuWS5IhvEQxmeqQo4TIeVG3W9pPdSa0o1Tonyu7zm4rCpRIuUoCTSZILeT1syppOpvmKhrOC8qzXBGO1xdFObNValez2yEVBCu20gHCgupebbxAAmGlHWq1ZiGJtI11P4VCOH0esJyUxbvXp2Ux8B3oDZ2u55cGMERiuQX3+s5o4EC/b2IZjRdqC4ZdB0JPV/ZMdCwI4Q3ZHzqwO3B6xrJZLjL2tybU6EjX7JnQVCAeb9BuH+rJPAe6A/P9aNWQ/sCpP41x8hGnSYJ4WMwqrB5nCud6Rz6pHQfbsDSI1qOZVM3QZlkzqEm38cAsbMY2CTeO/K9R7YG5z8qcSqSfELz+YHaDSbcDvc7ordc+OW0e0wF4DJ6AZwACH5yAN+AMjAEGV+Az+AK+Wt+s79ZP69ca3d9rNI/AP8v6/QdGV2UP</latexit>

[x * 2 for x in my_list]

5

Collection-oriented languages are relatively general

Nature | Vol 585 | 17 September 2020 | 359

Scientific Python ecosystem
Python is an open-source, general-purpose interpreted programming
language well suited to standard programming tasks such as cleaning
data, interacting with web resources and parsing text. Adding fast array
operations and linear algebra enables scientists to do all their work
within a single programming language—one that has the advantage of
being famously easy to learn and teach, as witnessed by its adoption
as a primary learning language in many universities.

Even though NumPy is not part of Python’s standard library, it ben-
efits from a good relationship with the Python developers. Over the
years, the Python language has added new features and special syntax
so that NumPy would have a more succinct and easier-to-read array
notation. However, because it is not part of the standard library, NumPy
is able to dictate its own release policies and development patterns.

SciPy and Matplotlib are tightly coupled with NumPy in terms of his-
tory, development and use. SciPy provides fundamental algorithms for
scientific computing, including mathematical, scientific and engineer-
ing routines. Matplotlib generates publication-ready figures and visu-
alizations. The combination of NumPy, SciPy and Matplotlib, together
with an advanced interactive environment such as IPython20 or Jupy-
ter21, provides a solid foundation for array programming in Python. The
scientific Python ecosystem (Fig. 2) builds on top of this foundation to
provide several, widely used technique-specific libraries15,16,22, that in
turn underlie numerous domain-specific projects23–28. NumPy, at the
base of the ecosystem of array-aware libraries, sets documentation
standards, provides array testing infrastructure and adds build sup-
port for Fortran and other compilers.

Many research groups have designed large, complex scientific librar-
ies that add application-specific functionality to the ecosystem. For
example, the eht-imaging library29, developed by the Event Horizon

Telescope collaboration for radio interferometry imaging, analysis
and simulation, relies on many lower-level components of the scientific
Python ecosystem. In particular, the EHT collaboration used this library
for the first imaging of a black hole. Within eht-imaging, NumPy arrays
are used to store and manipulate numerical data at every step in the
processing chain: from raw data through calibration and image recon-
struction. SciPy supplies tools for general image-processing tasks such
as filtering and image alignment, and scikit-image, an image-processing
library that extends SciPy, provides higher-level functionality such
as edge filters and Hough transforms. The ‘scipy.optimize’ module
performs mathematical optimization. NetworkX22, a package for com-
plex network analysis, is used to verify image comparison consistency.
Astropy23,24 handles standard astronomical file formats and computes
time–coordinate transformations. Matplotlib is used to visualize data
and to generate the final image of the black hole.

The interactive environment created by the array programming foun-
dation and the surrounding ecosystem of tools—inside of IPython or
Jupyter—is ideally suited to exploratory data analysis. Users can fluidly
inspect, manipulate and visualize their data, and rapidly iterate to refine
programming statements. These statements are then stitched together
into imperative or functional programs, or notebooks containing both
computation and narrative. Scientific computing beyond exploratory
work is often done in a text editor or an integrated development envi-
ronment (IDE) such as Spyder. This rich and productive environment
has made Python popular for scientific research.

To complement this facility for exploratory work and rapid proto-
typing, NumPy has developed a culture of using time-tested software
engineering practices to improve collaboration and reduce error30. This
culture is not only adopted by leaders in the project but also enthusi-
astically taught to newcomers. The NumPy team was early to adopt
distributed revision control and code review to improve collaboration

cantera
Chemistry

Biopython
Biology

Astropy
Astronomy

simpeg
Geophysics

NLTK
Linguistics

QuantEcon
Economics

SciPy
Algorithms

Matplotlib
Plots

scikit-learn
Machine learning

NetworkX
Network analysis

pandas, statsmodels
Statistics

scikit-image
Image processing

PsychoPykhmer Qiime2 FiPy deepchem

librosaPyWavelets SunPy QuTiP yt

nibabel yellowbrickmne-python scikit-HEP

eht-imagingMDAnalysis iriscesium PyChrono

Foundation

Application-specific

Domain-specific

Technique-specific

Array ProtocolsNumPy API

Python
Language

IPython / Jupyter
Interactive environments

NumPy
Arrays

New array implementations

Fig. 2 | NumPy is the base of the scientific Python ecosystem. Essential libraries and projects that depend on NumPy’s API gain access to new array
implementations that support NumPy’s array protocols (Fig. 3).

“Array Programming with NumPy” Harris et al. (Nature)

5

Collection-oriented languages are relatively general

Nature | Vol 585 | 17 September 2020 | 359

Scientific Python ecosystem
Python is an open-source, general-purpose interpreted programming
language well suited to standard programming tasks such as cleaning
data, interacting with web resources and parsing text. Adding fast array
operations and linear algebra enables scientists to do all their work
within a single programming language—one that has the advantage of
being famously easy to learn and teach, as witnessed by its adoption
as a primary learning language in many universities.

Even though NumPy is not part of Python’s standard library, it ben-
efits from a good relationship with the Python developers. Over the
years, the Python language has added new features and special syntax
so that NumPy would have a more succinct and easier-to-read array
notation. However, because it is not part of the standard library, NumPy
is able to dictate its own release policies and development patterns.

SciPy and Matplotlib are tightly coupled with NumPy in terms of his-
tory, development and use. SciPy provides fundamental algorithms for
scientific computing, including mathematical, scientific and engineer-
ing routines. Matplotlib generates publication-ready figures and visu-
alizations. The combination of NumPy, SciPy and Matplotlib, together
with an advanced interactive environment such as IPython20 or Jupy-
ter21, provides a solid foundation for array programming in Python. The
scientific Python ecosystem (Fig. 2) builds on top of this foundation to
provide several, widely used technique-specific libraries15,16,22, that in
turn underlie numerous domain-specific projects23–28. NumPy, at the
base of the ecosystem of array-aware libraries, sets documentation
standards, provides array testing infrastructure and adds build sup-
port for Fortran and other compilers.

Many research groups have designed large, complex scientific librar-
ies that add application-specific functionality to the ecosystem. For
example, the eht-imaging library29, developed by the Event Horizon

Telescope collaboration for radio interferometry imaging, analysis
and simulation, relies on many lower-level components of the scientific
Python ecosystem. In particular, the EHT collaboration used this library
for the first imaging of a black hole. Within eht-imaging, NumPy arrays
are used to store and manipulate numerical data at every step in the
processing chain: from raw data through calibration and image recon-
struction. SciPy supplies tools for general image-processing tasks such
as filtering and image alignment, and scikit-image, an image-processing
library that extends SciPy, provides higher-level functionality such
as edge filters and Hough transforms. The ‘scipy.optimize’ module
performs mathematical optimization. NetworkX22, a package for com-
plex network analysis, is used to verify image comparison consistency.
Astropy23,24 handles standard astronomical file formats and computes
time–coordinate transformations. Matplotlib is used to visualize data
and to generate the final image of the black hole.

The interactive environment created by the array programming foun-
dation and the surrounding ecosystem of tools—inside of IPython or
Jupyter—is ideally suited to exploratory data analysis. Users can fluidly
inspect, manipulate and visualize their data, and rapidly iterate to refine
programming statements. These statements are then stitched together
into imperative or functional programs, or notebooks containing both
computation and narrative. Scientific computing beyond exploratory
work is often done in a text editor or an integrated development envi-
ronment (IDE) such as Spyder. This rich and productive environment
has made Python popular for scientific research.

To complement this facility for exploratory work and rapid proto-
typing, NumPy has developed a culture of using time-tested software
engineering practices to improve collaboration and reduce error30. This
culture is not only adopted by leaders in the project but also enthusi-
astically taught to newcomers. The NumPy team was early to adopt
distributed revision control and code review to improve collaboration

cantera
Chemistry

Biopython
Biology

Astropy
Astronomy

simpeg
Geophysics

NLTK
Linguistics

QuantEcon
Economics

SciPy
Algorithms

Matplotlib
Plots

scikit-learn
Machine learning

NetworkX
Network analysis

pandas, statsmodels
Statistics

scikit-image
Image processing

PsychoPykhmer Qiime2 FiPy deepchem

librosaPyWavelets SunPy QuTiP yt

nibabel yellowbrickmne-python scikit-HEP

eht-imagingMDAnalysis iriscesium PyChrono

Foundation

Application-specific

Domain-specific

Technique-specific

Array ProtocolsNumPy API

Python
Language

IPython / Jupyter
Interactive environments

NumPy
Arrays

New array implementations

Fig. 2 | NumPy is the base of the scientific Python ecosystem. Essential libraries and projects that depend on NumPy’s API gain access to new array
implementations that support NumPy’s array protocols (Fig. 3).

DSLs

“Array Programming with NumPy” Harris et al. (Nature)

5

Collection-oriented languages are relatively general

Nature | Vol 585 | 17 September 2020 | 359

Scientific Python ecosystem
Python is an open-source, general-purpose interpreted programming
language well suited to standard programming tasks such as cleaning
data, interacting with web resources and parsing text. Adding fast array
operations and linear algebra enables scientists to do all their work
within a single programming language—one that has the advantage of
being famously easy to learn and teach, as witnessed by its adoption
as a primary learning language in many universities.

Even though NumPy is not part of Python’s standard library, it ben-
efits from a good relationship with the Python developers. Over the
years, the Python language has added new features and special syntax
so that NumPy would have a more succinct and easier-to-read array
notation. However, because it is not part of the standard library, NumPy
is able to dictate its own release policies and development patterns.

SciPy and Matplotlib are tightly coupled with NumPy in terms of his-
tory, development and use. SciPy provides fundamental algorithms for
scientific computing, including mathematical, scientific and engineer-
ing routines. Matplotlib generates publication-ready figures and visu-
alizations. The combination of NumPy, SciPy and Matplotlib, together
with an advanced interactive environment such as IPython20 or Jupy-
ter21, provides a solid foundation for array programming in Python. The
scientific Python ecosystem (Fig. 2) builds on top of this foundation to
provide several, widely used technique-specific libraries15,16,22, that in
turn underlie numerous domain-specific projects23–28. NumPy, at the
base of the ecosystem of array-aware libraries, sets documentation
standards, provides array testing infrastructure and adds build sup-
port for Fortran and other compilers.

Many research groups have designed large, complex scientific librar-
ies that add application-specific functionality to the ecosystem. For
example, the eht-imaging library29, developed by the Event Horizon

Telescope collaboration for radio interferometry imaging, analysis
and simulation, relies on many lower-level components of the scientific
Python ecosystem. In particular, the EHT collaboration used this library
for the first imaging of a black hole. Within eht-imaging, NumPy arrays
are used to store and manipulate numerical data at every step in the
processing chain: from raw data through calibration and image recon-
struction. SciPy supplies tools for general image-processing tasks such
as filtering and image alignment, and scikit-image, an image-processing
library that extends SciPy, provides higher-level functionality such
as edge filters and Hough transforms. The ‘scipy.optimize’ module
performs mathematical optimization. NetworkX22, a package for com-
plex network analysis, is used to verify image comparison consistency.
Astropy23,24 handles standard astronomical file formats and computes
time–coordinate transformations. Matplotlib is used to visualize data
and to generate the final image of the black hole.

The interactive environment created by the array programming foun-
dation and the surrounding ecosystem of tools—inside of IPython or
Jupyter—is ideally suited to exploratory data analysis. Users can fluidly
inspect, manipulate and visualize their data, and rapidly iterate to refine
programming statements. These statements are then stitched together
into imperative or functional programs, or notebooks containing both
computation and narrative. Scientific computing beyond exploratory
work is often done in a text editor or an integrated development envi-
ronment (IDE) such as Spyder. This rich and productive environment
has made Python popular for scientific research.

To complement this facility for exploratory work and rapid proto-
typing, NumPy has developed a culture of using time-tested software
engineering practices to improve collaboration and reduce error30. This
culture is not only adopted by leaders in the project but also enthusi-
astically taught to newcomers. The NumPy team was early to adopt
distributed revision control and code review to improve collaboration

cantera
Chemistry

Biopython
Biology

Astropy
Astronomy

simpeg
Geophysics

NLTK
Linguistics

QuantEcon
Economics

SciPy
Algorithms

Matplotlib
Plots

scikit-learn
Machine learning

NetworkX
Network analysis

pandas, statsmodels
Statistics

scikit-image
Image processing

PsychoPykhmer Qiime2 FiPy deepchem

librosaPyWavelets SunPy QuTiP yt

nibabel yellowbrickmne-python scikit-HEP

eht-imagingMDAnalysis iriscesium PyChrono

Foundation

Application-specific

Domain-specific

Technique-specific

Array ProtocolsNumPy API

Python
Language

IPython / Jupyter
Interactive environments

NumPy
Arrays

New array implementations

Fig. 2 | NumPy is the base of the scientific Python ecosystem. Essential libraries and projects that depend on NumPy’s API gain access to new array
implementations that support NumPy’s array protocols (Fig. 3).

DSLs

Collection-Oriented

(also DSLs?)

“Array Programming with NumPy” Harris et al. (Nature)

5

Collection-oriented languages are relatively general

Nature | Vol 585 | 17 September 2020 | 359

Scientific Python ecosystem
Python is an open-source, general-purpose interpreted programming
language well suited to standard programming tasks such as cleaning
data, interacting with web resources and parsing text. Adding fast array
operations and linear algebra enables scientists to do all their work
within a single programming language—one that has the advantage of
being famously easy to learn and teach, as witnessed by its adoption
as a primary learning language in many universities.

Even though NumPy is not part of Python’s standard library, it ben-
efits from a good relationship with the Python developers. Over the
years, the Python language has added new features and special syntax
so that NumPy would have a more succinct and easier-to-read array
notation. However, because it is not part of the standard library, NumPy
is able to dictate its own release policies and development patterns.

SciPy and Matplotlib are tightly coupled with NumPy in terms of his-
tory, development and use. SciPy provides fundamental algorithms for
scientific computing, including mathematical, scientific and engineer-
ing routines. Matplotlib generates publication-ready figures and visu-
alizations. The combination of NumPy, SciPy and Matplotlib, together
with an advanced interactive environment such as IPython20 or Jupy-
ter21, provides a solid foundation for array programming in Python. The
scientific Python ecosystem (Fig. 2) builds on top of this foundation to
provide several, widely used technique-specific libraries15,16,22, that in
turn underlie numerous domain-specific projects23–28. NumPy, at the
base of the ecosystem of array-aware libraries, sets documentation
standards, provides array testing infrastructure and adds build sup-
port for Fortran and other compilers.

Many research groups have designed large, complex scientific librar-
ies that add application-specific functionality to the ecosystem. For
example, the eht-imaging library29, developed by the Event Horizon

Telescope collaboration for radio interferometry imaging, analysis
and simulation, relies on many lower-level components of the scientific
Python ecosystem. In particular, the EHT collaboration used this library
for the first imaging of a black hole. Within eht-imaging, NumPy arrays
are used to store and manipulate numerical data at every step in the
processing chain: from raw data through calibration and image recon-
struction. SciPy supplies tools for general image-processing tasks such
as filtering and image alignment, and scikit-image, an image-processing
library that extends SciPy, provides higher-level functionality such
as edge filters and Hough transforms. The ‘scipy.optimize’ module
performs mathematical optimization. NetworkX22, a package for com-
plex network analysis, is used to verify image comparison consistency.
Astropy23,24 handles standard astronomical file formats and computes
time–coordinate transformations. Matplotlib is used to visualize data
and to generate the final image of the black hole.

The interactive environment created by the array programming foun-
dation and the surrounding ecosystem of tools—inside of IPython or
Jupyter—is ideally suited to exploratory data analysis. Users can fluidly
inspect, manipulate and visualize their data, and rapidly iterate to refine
programming statements. These statements are then stitched together
into imperative or functional programs, or notebooks containing both
computation and narrative. Scientific computing beyond exploratory
work is often done in a text editor or an integrated development envi-
ronment (IDE) such as Spyder. This rich and productive environment
has made Python popular for scientific research.

To complement this facility for exploratory work and rapid proto-
typing, NumPy has developed a culture of using time-tested software
engineering practices to improve collaboration and reduce error30. This
culture is not only adopted by leaders in the project but also enthusi-
astically taught to newcomers. The NumPy team was early to adopt
distributed revision control and code review to improve collaboration

cantera
Chemistry

Biopython
Biology

Astropy
Astronomy

simpeg
Geophysics

NLTK
Linguistics

QuantEcon
Economics

SciPy
Algorithms

Matplotlib
Plots

scikit-learn
Machine learning

NetworkX
Network analysis

pandas, statsmodels
Statistics

scikit-image
Image processing

PsychoPykhmer Qiime2 FiPy deepchem

librosaPyWavelets SunPy QuTiP yt

nibabel yellowbrickmne-python scikit-HEP

eht-imagingMDAnalysis iriscesium PyChrono

Foundation

Application-specific

Domain-specific

Technique-specific

Array ProtocolsNumPy API

Python
Language

IPython / Jupyter
Interactive environments

NumPy
Arrays

New array implementations

Fig. 2 | NumPy is the base of the scientific Python ecosystem. Essential libraries and projects that depend on NumPy’s API gain access to new array
implementations that support NumPy’s array protocols (Fig. 3).

DSLs

Collection-Oriented

(also DSLs?)

Fragmentation is forcing

implementation ecosystem

“Array Programming with NumPy” Harris et al. (Nature)

6

We need collections for performance due to Amdahl’s law

Plot from Wikipedia

6

We need collections for performance due to Amdahl’s law

Plot from Wikipedia

But many applications are data-rich

7

Avoiding the von Neumann model of languages

c := 0
for i := 1 step 1 until n do
 c := c + a[i] x b[i]

Imperative Form

rich world of expressions

7

Avoiding the von Neumann model of languages

c := 0
for i := 1 step 1 until n do
 c := c + a[i] x b[i]

Imperative Form

rich world of expressions

7

Avoiding the von Neumann model of languages

c := 0
for i := 1 step 1 until n do
 c := c + a[i] x b[i]

poor world of

statements

Imperative Form

rich world of expressions

7

Avoiding the von Neumann model of languages

c := 0
for i := 1 step 1 until n do
 c := c + a[i] x b[i]

transfers one scalar value to memory:

von Neumann bottleneck in software

the assignment transfers one value to memory

poor world of

statements

Imperative Form

rich world of expressions

7

Avoiding the von Neumann model of languages

c := 0
for i := 1 step 1 until n do
 c := c + a[i] x b[i]

transfers one scalar value to memory:

von Neumann bottleneck in software

the assignment transfers one value to memory

poor world of

statements

Imperative Form

c = sum(a[0:n] * b[0:n])

Functional Form

produces a vector

• A record-at-a-time user interface forces the programmer to do
manual query optimization, and this is often hard.

• Set-a-time languages are good, regardless of the data model,
since they offer much improved physical data independence.

• The programming language and database communities have
long recognized that aggregate data structures and general
operations on them give great flexibility to programmers and
language implementors.

8

Collection-oriented operations let us operate on
collections as a whole

“What Goes Around Comes Around” Stonebraker and Hellerstein

“Collection-Oriented Languages” Sipelstein and Blelloch

9

Collection-Oriented Languages

A collection-oriented programming model provides collective operations
on some collection/abstract data structure

Lists

Lisp [1958]

Sets

SETL
[1970]

Nested Sequences

NESL [1994]

Relations

Relational Algebra [1970]

Arrays

APL [1962]

NumPy [2020]
Grids

Halide [2012]

Matrices and Tensors

Matlab 1979], Taco 2017

Graphs

GraphLab [2010]

Vectors

Vector Model 1990

Meshes

2011

9

Collection-Oriented Languages

A collection-oriented programming model provides collective operations
on some collection/abstract data structure

Lists

Lisp [1958]

Sets

SETL
[1970]

Nested Sequences

NESL [1994]

Relations

Relational Algebra [1970]

Arrays

APL [1962]

NumPy [2020]
Grids

Halide [2012]

Matrices and Tensors

Matlab 1979], Taco 2017

Graphs

GraphLab [2010]

Vectors

Vector Model 1990

Meshes

2011

Object Orientation vs.

Collection Orientation

10

Features of collections

• Ordering: unordered, sequence, or grid-ordered?

• Regularity: Can the collection represent irregularity/sparsity?

• Nesting: nested or flat collections?

• Random-access: can individual elements be accessed?

11

The APL Programming Language

n ← 4 5 6 7 i.e., mkArray

11

The APL Programming Language

n+4
8 9 10 11 4 is broadcast across each n

n ← 4 5 6 7 i.e., mkArray

11

The APL Programming Language

element-wise addition

(l4 makes the array [1,2,3,4])

n+l4
5 7 9 11

n+4
8 9 10 11 4 is broadcast across each n

n ← 4 5 6 7 i.e., mkArray

11

The APL Programming Language

+/n
22

n

∑
i=0

ni

element-wise addition

(l4 makes the array [1,2,3,4])

n+l4
5 7 9 11

n+4
8 9 10 11 4 is broadcast across each n

n ← 4 5 6 7 i.e., mkArray

11

The APL Programming Language

+/n
22

n

∑
i=0

ni

element-wise addition

(l4 makes the array [1,2,3,4])

n+l4
5 7 9 11

n+4
8 9 10 11 4 is broadcast across each n

n ← 4 5 6 7 i.e., mkArray

+/(3+⍳4)
22

4

∑
i=1

(i + 3)

12

Array Programming with NumPy

“Array Programming with NumPy” Harris et al. (Nature)

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

12

Array Programming with NumPy

“Array Programming with NumPy” Harris et al. (Nature)

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

12

Array Programming with NumPy

“Array Programming with NumPy” Harris et al. (Nature)

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

12

Array Programming with NumPy

“Array Programming with NumPy” Harris et al. (Nature)

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

12

Array Programming with NumPy

“Array Programming with NumPy” Harris et al. (Nature)

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

12

Array Programming with NumPy

“Array Programming with NumPy” Harris et al. (Nature)

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

13

The SETL Language

TuplesSets Functions

(), ,

14

SETL Set Former Notation

{x ∈ s ∣ C(x)}

Notation Example

14

SETL Set Former Notation

{x ∈ s ∣ C(x)}

Notation Example

{x ∈ {1,5,10,32} ∣ x lt 10} → {1,5}

14

SETL Set Former Notation

{x ∈ s ∣ C(x)}

Notation Example

{x ∈ {1,5,10,32} ∣ x lt 10} → {1,5}

{e(x), x ∈ s ∣ C(x)}

14

SETL Set Former Notation

{x ∈ s ∣ C(x)}

Notation Example

{x ∈ {1,5,10,32} ∣ x lt 10} → {1,5}

{e(x), x ∈ s ∣ C(x)} {i * i, i ∈ {1,3,5}} → {1,9,25}

14

SETL Set Former Notation

{x ∈ s ∣ C(x)}

Notation Example

{x ∈ {1,5,10,32} ∣ x lt 10} → {1,5}

{e(x), x ∈ s ∣ C(x)} {i * i, i ∈ {1,3,5}} → {1,9,25}

{e(x), min ≤ i ≤ max ∣ C(i)}

14

SETL Set Former Notation

{x ∈ s ∣ C(x)}

Notation Example

{x ∈ {1,5,10,32} ∣ x lt 10} → {1,5}

{e(x), x ∈ s ∣ C(x)} {i * i, i ∈ {1,3,5}} → {1,9,25}

{e(x), min ≤ i ≤ max ∣ C(i)} {i * 2 − 1, 1 ≤ i ≤ 5} → {1,3,5,7,9}

14

SETL Set Former Notation

{x ∈ s ∣ C(x)}

Notation Example

{x ∈ {1,5,10,32} ∣ x lt 10} → {1,5}

{e(x), x ∈ s ∣ C(x)} {i * i, i ∈ {1,3,5}} → {1,9,25}

{e(x), min ≤ i ≤ max ∣ C(i)} {i * 2 − 1, 1 ≤ i ≤ 5} → {1,3,5,7,9}

[op : x ∈ s ∣ C(x)]e(x)

14

SETL Set Former Notation

{x ∈ s ∣ C(x)}

Notation Example

{x ∈ {1,5,10,32} ∣ x lt 10} → {1,5}

{e(x), x ∈ s ∣ C(x)} {i * i, i ∈ {1,3,5}} → {1,9,25}

{e(x), min ≤ i ≤ max ∣ C(i)} {i * 2 − 1, 1 ≤ i ≤ 5} → {1,3,5,7,9}

[op : x ∈ s ∣ C(x)]e(x) [+ : x ∈ {1,2,3}](x * x) → 14

14

SETL Set Former Notation

{x ∈ s ∣ C(x)}

Notation Example

{x ∈ {1,5,10,32} ∣ x lt 10} → {1,5}

{e(x), x ∈ s ∣ C(x)} {i * i, i ∈ {1,3,5}} → {1,9,25}

{e(x), min ≤ i ≤ max ∣ C(i)} {i * 2 − 1, 1 ≤ i ≤ 5} → {1,3,5,7,9}

[op : x ∈ s ∣ C(x)]e(x) [+ : x ∈ {1,2,3}](x * x) → 14

∀x ∈ s ∣ C(x)

14

SETL Set Former Notation

{x ∈ s ∣ C(x)}

Notation Example

{x ∈ {1,5,10,32} ∣ x lt 10} → {1,5}

{e(x), x ∈ s ∣ C(x)} {i * i, i ∈ {1,3,5}} → {1,9,25}

{e(x), min ≤ i ≤ max ∣ C(i)} {i * 2 − 1, 1 ≤ i ≤ 5} → {1,3,5,7,9}

[op : x ∈ s ∣ C(x)]e(x) [+ : x ∈ {1,2,3}](x * x) → 14

∀x ∈ s ∣ C(x) ∀x ∈ 1,2,4 | (x//2) eq 1 → f

14

SETL Set Former Notation

{x ∈ s ∣ C(x)}

Notation Example

{x ∈ {1,5,10,32} ∣ x lt 10} → {1,5}

{e(x), x ∈ s ∣ C(x)} {i * i, i ∈ {1,3,5}} → {1,9,25}

{e(x), min ≤ i ≤ max ∣ C(i)} {i * 2 − 1, 1 ≤ i ≤ 5} → {1,3,5,7,9}

[op : x ∈ s ∣ C(x)]e(x) [+ : x ∈ {1,2,3}](x * x) → 14

∀x ∈ s ∣ C(x) ∀x ∈ 1,2,4 | (x//2) eq 1 → f

[+ : x ∈ s1, y ∈ s2]{ < x, y > }

14

SETL Set Former Notation

{x ∈ s ∣ C(x)}

Notation Example

{x ∈ {1,5,10,32} ∣ x lt 10} → {1,5}

{e(x), x ∈ s ∣ C(x)} {i * i, i ∈ {1,3,5}} → {1,9,25}

{e(x), min ≤ i ≤ max ∣ C(i)} {i * 2 − 1, 1 ≤ i ≤ 5} → {1,3,5,7,9}

[op : x ∈ s ∣ C(x)]e(x) [+ : x ∈ {1,2,3}](x * x) → 14

∀x ∈ s ∣ C(x) ∀x ∈ 1,2,4 | (x//2) eq 1 → f

[+ : x ∈ s1, y ∈ s2]{ < x, y > } [+ : x ∈ {1,2}, y ∈ {a, b}]{ < x, y > } →
{ < 1,a > , < 1,b > , < 2,a > , < 2,b > }

14

SETL Set Former Notation

{x ∈ s ∣ C(x)}

Notation Example

{x ∈ {1,5,10,32} ∣ x lt 10} → {1,5}

{e(x), x ∈ s ∣ C(x)} {i * i, i ∈ {1,3,5}} → {1,9,25}

{e(x), min ≤ i ≤ max ∣ C(i)} {i * 2 − 1, 1 ≤ i ≤ 5} → {1,3,5,7,9}

[op : x ∈ s ∣ C(x)]e(x) [+ : x ∈ {1,2,3}](x * x) → 14

Standard set operations like union, intersection, and set difference are also supported

∀x ∈ s ∣ C(x) ∀x ∈ 1,2,4 | (x//2) eq 1 → f

[+ : x ∈ s1, y ∈ s2]{ < x, y > } [+ : x ∈ {1,2}, y ∈ {a, b}]{ < x, y > } →
{ < 1,a > , < 1,b > , < 2,a > , < 2,b > }

15

SETL Table Functions

f = { < 1,1 > , < 2,4 > , < 3,9 > }

15

SETL Table Functions

f = { < 1,1 > , < 2,4 > , < 3,9 > }
f(2) → 4

15

SETL Table Functions

f = { < 1,1 > , < 2,4 > , < 3,9 > }
f(2) → 4
f + { < 2,5 > } → { < 1,1 > , < 2,5 > , < 3,9 > }

15

SETL Table Functions

f = { < 1,1 > , < 2,4 > , < 3,9 > }
f(2) → 4
f + { < 2,5 > } → { < 1,1 > , < 2,5 > , < 3,9 > }

A

D E

B C

15

SETL Table Functions

f = { < 1,1 > , < 2,4 > , < 3,9 > }
f(2) → 4
f + { < 2,5 > } → { < 1,1 > , < 2,5 > , < 3,9 > }

left = { < A, B > , < B, D > }
right = { < A, C > , < B, E > }

A

D E

B C

16

Relational Algebra
name id department
Harry 3245 CS
Sally 7264 EE

George 1379 CS
Mary 1733 ME
Rita 2357 CS

department manager
CS George
EE Mary

employees departments

16

Relational Algebra
name id department
Harry 3245 CS
Sally 7264 EE

George 1379 CS
Mary 1733 ME
Rita 2357 CS

department manager
CS George
EE Mary

employees departments

Projection ()Π Πname,department employees
name department
Harry CS
Sally EE

George CS
Mary ME
Rita CS

16

Relational Algebra
name id department
Harry 3245 CS
Sally 7264 EE

George 1379 CS
Mary 1733 ME
Rita 2357 CS

department manager
CS George
EE Mary

employees departments

Projection ()Π Πname,department employees
name department
Harry CS
Sally EE

George CS
Mary ME
Rita CS

Selection ()σ σdepartment=CS employees
Namename id department

Harry 3245 CS
George 1379 CS

Rita 2357 CS

16

Relational Algebra
name id department
Harry 3245 CS
Sally 7264 EE

George 1379 CS
Mary 1733 ME
Rita 2357 CS

department manager
CS George
EE Mary

employees departments

Projection ()Π Πname,department employees
name department
Harry CS
Sally EE

George CS
Mary ME
Rita CS

Selection ()σ σdepartment=CS employees
Namename id department

Harry 3245 CS
George 1379 CS

Rita 2357 CS

Natural join ()⋈ employees ⋈ departments
name id department manager
Harry 3245 CS George
Sally 7264 EE Mary

George 1379 CS George
Rita 2357 CS George

17

Graph operations

(a) Initial state (b) State after A and B have fired

Figure 3. Conflicts in event-driven simulation

ity exhibited by some irregular algorithms. This application simu-
lates a network of processing stations that communicate by sending
messages along FIFO links. When a station processes a message,
its internal state may be updated, and it may produce zero or more
messages on its outgoing links. Sequential event-driven simulation
is implemented by maintaining a global priority queue of events
called the event list and processing the earliest event at each step.
In this irregular algorithm, activities correspond to the processing
of events.

In principle, event-driven simulation can be performed in paral-
lel by processing multiple events from the event list simultaneously,
rather than one event at a time. However, unlike in Delaunay mesh
refinement, in which it was legal to process bad triangles concur-
rently provided they were well-separated in the mesh, it may not be
legal to process two events in parallel even if their stations are far
apart in the network. Figure 3 demonstrates this. Suppose that in
a sequential implementation, node A fires and produces a message
time-stamped 3, and then node B fires and produces a message
time-stamped 4. Notice that node C must consume this message
before it consumes the message time-stamped 5. Therefore, in Fig-
ure 3(a), the events at A and C cannot be processed in parallel even
though the stations are far apart in the network. However, notice
that if the message from B to C had a time-stamp greater than 5, it
would have been legal to process in parallel the events at nodes A
and C. To determine if two activities can be performed in parallel
at a given point in the execution of this algorithm, we need a crystal
ball to look into the future!

In short, static dependence graphs are inadequate abstractions
for irregular algorithms for the following reasons.
1. Dependences between activities in irregular algorithms are usu-

ally complex functions of runtime data values, so they cannot
be usefully captured by a static dependence graph.

2. Many irregular algorithms exhibit don’t-care non-determinism,
but this is hard to model with dependence graphs.

3. Whether or not it is safe to execute two activities in parallel at a
given point in the computation may depend on activities created
later in the computation. It is not clear how one models this with
dependence graphs.

3. Operator formulation of algorithms
These problems can be addressed by a data-centric formulation of
algorithms, called the operator formulation, in which an algorithm
is viewed in terms of its action on data structures. The operator
formulation can be defined for any abstract data type, and we will
use the graph ADT to illustrate the key ideas. As is standard, a
graph is (i) a set of nodes V , and (ii) a set of edges E ✓ V ⇥ V

between these nodes. Graphs can be directed or undirected, and
nodes and edges may be labeled with values.

We will not discuss a particular concrete representation for the
graph ADT. The implementation is free to choose the concrete
representation that is best suited for a particular algorithm and
machine: for example, cliques may be represented using dense
arrays, while sparse graphs may be represented using adjacency
lists. This is similar to the approach taken in relational databases:
SQL programmers use the relation ADT in writing programs, and
the underlying DBMS system is free to implement the ADT using
B-trees, hash tables, and other concrete data structures.

Figure 4. Active elements and neighborhoods

3.1 Active elements, neighborhoods and ordering
Active elements: At each point during the execution of a graph
algorithm, there are certain nodes or edges in the graph where
computation might be performed. These nodes and edges are called
active elements; to keep the discussion simple, we assume from
here on that active elements are nodes. To process an active node,
an operator is applied to it, and the resulting computation is called
an activity.

Neighborhoods: Performing an activity may require reading or
writing other nodes and edges in the graph. Borrowing terminology
from the literature on cellular automata, we refer to the set of nodes
and edges that are read or written while performing an activity as
the neighborhood of that activity. Figure 4 shows an undirected
sparse graph in which the filled nodes represent active nodes, and
shaded regions represent the neighborhoods of those active nodes.
Note that in general, the neighborhood of an active node is distinct
from its neighbors in the graph.

Ordering: In general, there are many active nodes in a graph,
so a sequential implementation must pick one of them and perform
the appropriate activity. In some algorithms such as Delaunay mesh
refinement, the implementation is allowed to pick any active node
for execution. We call these unordered algorithms. In contrast,
some algorithms dictate an order in which active nodes must be
processed by a sequential implementation; we call these ordered
algorithms. Event-driven simulation is an example: the sequential
algorithm for event-driven simulation processes messages in global
time order. The order on active nodes may be a partial order.

We illustrate these concepts using the algorithms from Sec-
tion 2. In DMR, the mesh is usually represented by a graph in which
nodes represent triangles and edges represent adjacency of trian-
gles. The active nodes in this algorithm are the nodes representing
bad triangles, and the neighborhood of an active node is the cav-
ity of that bad triangle. In event-driven simulation, active nodes are
stations that have messages on their input channels, and neighbor-
hoods contain only the active node.

3.2 From algorithms to programs
A natural way to write these algorithms is to use worklists to keep
track of active nodes. However, programs written directly in terms
of worklists, such as the one in Figure 2, encode a particular or-
der of processing worklist items and do not express the don’t-care
nondeterminism in unordered algorithms. To address this problem,
we can use the Galois programming model, which is a sequential,
object-oriented programming model (such as sequential Java), aug-
mented with two Galois set iterators [40]:

DEFINITION 1. Galois set iterators:

• Unordered-set iterator: foreach (e in Set S) {B(e)}
The loop body B(e) is executed for each element e of set S.
The order in which iterations execute is indeterminate and can
be chosen by the implementation. There may be dependences

Left figure from Tao of Parallelism in Algorithms (Pingali et al.)

Simultaneous operations on
different parts of the graph

push

pull

edge

functions

18

Relations, Graphs, and Algebra: No glove fits all

1

2

4

3

6

5

7

Names City Age
Peter Boston 54
Mary San Fransisco 35
Paul New York 23

Adam Seattle 84
Hilde Boston 19
Bob Chicago 76
Sam Portland 32

Angela Los Angeles 62

Tensors

Relations

Graphs

Ideal for combining data to form systems

Ideal for global operations

Ideal for local operations

19

It is critical to be able to compose languages and
abstractions

Amaz
Gre

Po

Tensors

Names City Age

Peter Boston 54

Mary San Fransisco 35

Paul New York 23

Adam Seattle 84

Hilde Boston 19

Bob Chicago 76

Sam Portland 32

Angela Los Angeles 62

Relations
Graphs

20

Example: Relations and Tensors

name department manager
Harry CS George
Sally EE Mary

George CS George
Rita CS George

Harry

Sally

George

Rita

CS

EE

Tensor Assembly

George Mary

x

x
x

x

x

21

Example: Relations and Graphs

name1 name2
Harry Sally
Sally Harry

George Rita
Rita George
Sally Rita
Rita Sally

name department
Harry CS
Sally EE

George CS
Rita CS

⋈

George
(CS)

Harry
(CS)

Sally
(EE)

Rita
(CS)

Dynamics Tetrahedral Neo-Hookean FEM Simulation

22

Example: Graphs and Tensors (Simit)

Dynamics Tetrahedral Neo-Hookean FEM Simulation

22

Example: Graphs and Tensors (Simit)

Statics Tetrahedral Neo-Hookean FEM Simulation

22

Example: Graphs and Tensors (Simit)

Statics Triangular Neo-Hookean FEM Simulation

22

Example: Graphs and Tensors (Simit)

Statics Triangular Neo-Hookean FEM Simulation

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% precompute triangle areas
func precompute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply precompute_area to triangles;
end

Hypergraph
1

2

4

3

6

5

7

⨉

23

Statics Triangular Neo-Hookean FEM Simulation

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% precompute triangle areas
func precompute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply precompute_area to triangles;
end

Hypergraph
1

2

4

3

6

5

7

⨉ 1

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

23

Statics Triangular Neo-Hookean FEM Simulation

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% precompute triangle areas
func precompute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply precompute_area to triangles;
end

Hypergraph
1

2

4

3

6

5

7

⨉ 1

23

Statics Triangular Neo-Hookean FEM Simulation

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% precompute triangle areas
func precompute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply precompute_area to triangles;
end

Hypergraph
1

2

4

3

6

5

7

⨉ 1

2

4

3

6

5

7

extern verts : set{Vertex};

23

Statics Triangular Neo-Hookean FEM Simulation

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% precompute triangle areas
func precompute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply precompute_area to triangles;
end

Hypergraph
1

2

4

3

6

5

7

⨉ 1

2

4

3

6

5

7

23

Statics Triangular Neo-Hookean FEM Simulation

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% precompute triangle areas
func precompute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply precompute_area to triangles;
end

Hypergraph
1

2

4

3

6

5

7

⨉ 1

2

4

3

6

5

7

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

23

Statics Triangular Neo-Hookean FEM Simulation

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% precompute triangle areas
func precompute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply precompute_area to triangles;
end

Hypergraph
1

2

4

3

6

5

7

⨉ 1

2

4

3

6

5

7

23

Statics Triangular Neo-Hookean FEM Simulation

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% precompute triangle areas
func precompute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply precompute_area to triangles;
end

Hypergraph
1

2

4

3

6

5

7

⨉ 1

2

4

3

6

5

7

extern triangles : set{Triangle}(verts, verts, verts);

23

Statics Triangular Neo-Hookean FEM Simulation

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% precompute triangle areas
func precompute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply precompute_area to triangles;
end

Hypergraph
1

2

4

3

6

5

7

⨉ 1

2

4

3

6

5

7

23

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 24

Behavior
1

2

4

3

6

5

7

⨉

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

Statics Triangular Neo-Hookean FEM Simulation

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 24

Behavior
1

2

4

3

6

5

7

⨉

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +;

1

2

4

3

6

5

7

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +; K = map triangle_stiffness to triangles reduce +;

1

2

4

3

6

5

7

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +; K = map triangle_stiffness to triangles reduce +;

1

2

4

3

6

5

7

v2

v1

v3

v5

v4

v7

v6

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +; K = map triangle_stiffness to triangles reduce +;

1

2

4

3

6

5

7

v1
v2
v3
v4
v5
v6
v7

v1 v2 v4 v5 v6 v7v3

v2

v1

v3

v5

v4

v7

v6

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +; K = map triangle_stiffness to triangles reduce +;

1

2

4

3

6

5

7

v1
v2
v3
v4
v5
v6
v7

v1 v2 v4 v5 v6 v7v3

v2

v1

v3

v5

v4

v7

v6

v1

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +; K = map triangle_stiffness to triangles reduce +;

1

2

4

3

6

5

7

v1
v2
v3
v4
v5
v6
v7

v1 v2 v4 v5 v6 v7v3

v2

v1

v3

v5

v4

v7

v6

v1

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +; K = map triangle_stiffness to triangles reduce +;

1

2

4

3

6

5

7

v1
v2
v3
v4
v5
v6
v7

v1 v2 v4 v5 v6 v7v3

v2

v1

v3

v5

v4

v7

v6

v2

v1

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +; K = map triangle_stiffness to triangles reduce +;

1

2

4

3

6

5

7

v1
v2
v3
v4
v5
v6
v7

v1 v2 v4 v5 v6 v7v3

v2

v1

v3

v5

v4

v7

v6

v2

v1

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +; K = map triangle_stiffness to triangles reduce +;

1

2

4

3

6

5

7

v1
v2
v3
v4
v5
v6
v7

v1 v2 v4 v5 v6 v7v3

v2

v1

v3

v5

v4

v7

v6

v1

v3

v4

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +; K = map triangle_stiffness to triangles reduce +;

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

1

2

4

3

6

5

7

v1
v2
v3
v4
v5
v6
v7

v1 v2 v4 v5 v6 v7v3

v2

v1

v3

v5

v4

v7

v6

v1

v3

v4

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +; K = map triangle_stiffness to triangles reduce +;

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

1

2

4

3

6

5

7

v1
v2
v3
v4
v5
v6
v7

v1 v2 v4 v5 v6 v7v3

v2

v1

v3

v5

v4

v7

v6

v1

v3

v4

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +; K = map triangle_stiffness to triangles reduce +;

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

1

2

4

3

6

5

7

v1
v2
v3
v4
v5
v6
v7

v1 v2 v4 v5 v6 v7v3

v2

v1

v3

v5

v4

v7

v6

v1

v3

v4

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +; K = map triangle_stiffness to triangles reduce +;

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

1

2

4

3

6

5

7

v1
v2
v3
v4
v5
v6
v7

v1 v2 v4 v5 v6 v7v3

v2

v1

v3

v5

v4

v7

v6

v1

v3

v4

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +; K = map triangle_stiffness to triangles reduce +;

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

1

2

4

3

6

5

7

v1
v2
v3
v4
v5
v6
v7

v1 v2 v4 v5 v6 v7v3

v2

v1

v3

v5

v4

v7

v6

v1

v3

v4

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +; K = map triangle_stiffness to triangles reduce +;

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

1

2

4

3

6

5

7

v1
v2
v3
v4
v5
v6
v7

v1 v2 v4 v5 v6 v7v3

v2

v1

v3

v5

v4

v7

v6

v4

v6

v7

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +; K = map triangle_stiffness to triangles reduce +;

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 // assemble stiffness matrix
 // assemble force vector
 // compute new position
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 25

Assembly1

2

4

3

6

5

7

⨉

 K = map triangle_stiffness to triangles reduce +;
 f = map triangle_force to triangles reduce +;

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

Statics Triangular Neo-Hookean FEM Simulation

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 K = map triangle_stiffness to triangles reduce +;
 f = map triangle_force to triangles reduce +;
 // compute new position
 end
end 26

Linear Algebra
1

2

4

3

6

5

7

⨉

xt+1 = xt +K�1(fexternal � f)

 verts.x = verts.x + K \ (verts.fe - f);

Statics Triangular Neo-Hookean FEM Simulation

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 K = map triangle_stiffness to triangles reduce +;
 f = map triangle_force to triangles reduce +;
 // compute new position
 end
end 26

Linear Algebra
1

2

4

3

6

5

7

⨉

xt+1 = xt +K�1(fexternal � f)

 verts.x = verts.x + K \ (verts.fe - f);

Statics Triangular Neo-Hookean FEM Simulation

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 K = map triangle_stiffness to triangles reduce +;
 f = map triangle_force to triangles reduce +;
 // compute new position
 end
end 26

Linear Algebra
1

2

4

3

6

5

7

⨉

xt+1 = xt +K�1(fexternal � f)

 verts.x = verts.x + K \ (verts.fe - f);

Statics Triangular Neo-Hookean FEM Simulation

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 K = map triangle_stiffness to triangles reduce +;
 f = map triangle_force to triangles reduce +;
 // compute new position
 end
end 27

1

2

4

3

6

5

7

⨉

xt+1 = xt +K�1(fexternal � f)

 verts.x = verts.x + K \ (verts.fe - f);

Update graph fields

Statics Triangular Neo-Hookean FEM Simulation

% computes the stiffness of a triangle
func triangle_stiffness(t : Triangle, v : (Vertex*3))
 -> K : matrix[verts,verts](matrix[3,3](float))
 for i in 0:3
 for j in 0:3
 K(v(i),v(j)) += compute_stiffness(t,v,i,j);
 end
 end
end

% computes the force of a triangle on its vertices
func triangle_force(t : Triangle, v : (Vertex*3))
 -> f : vector[verts](vector[3](float))
 for i in 0:3
 f(v(i)) += compute_force(t,v,i);
 end
end

% newton's method
export func newton_method()
 while abs(f - verts.fe) > 1e-6
 K = map triangle_stiffness to triangles reduce +;
 f = map triangle_force to triangles reduce +;
 verts.x = verts.x + K \ (verts.fe - f);
 end
end

element Vertex
 x : vector[3](float); % position
 v : vector[3](float); % velocity
 fe : vector[3](float); % external force
end

element Triangle
 u : float; % shear modulus
 l : float; % lame's first parameter
 W : float; % volume
 B : matrix[3,3](float); % strain-displacement
end

% graph vertices and triangle hyperedges
extern verts : set{Vertex};
extern triangles : set{Triangle}(verts, verts, verts);

% compute triangle area
func compute_area(inout t : Triangle, v : (Vertex*3))
 t.B = compute_B(v);
 t.W = det(B) / 2.0;
end

export func init()
 apply compute_area to triangles;
end 27

1

2

4

3

6

5

7

⨉

Statics Triangular Neo-Hookean FEM Simulation

28

Collection-Oriented Languages

A collection-oriented programming model provides collective operations
on some collection/abstract data structure

Lists

Lisp M58

Sets

SETL S70

Nested Sequences

NESL B94

Relations

Relational Algebra C70,

Arrays

APL I62

NumPy

Grids

Sejits S09, Halide

Matrices and Tensors

Matlab M79, taco K17

Graphs

GraphLab L10

Vectors

Vector Model B90

Meshes

Liszt D11

