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Languages are tools for thought

“By relieving the brain of all unnecessary work, a good notation 
sets it free to concentrate on the more advanced problems” 
 — Alfred N. Whitehead
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Collection-Oriented languages are an important subclass 
of DSLs as discussed in this course

DSLs

Collection-Oriented 
Languages

Economy of scale

in notation and execution

How many operations?

C = A ./ B

<latexit sha1_base64="Du7Mnmb8RIVyc5l9vPepFtT+UAo="></latexit>

c = Ab

<latexit sha1_base64="+cVlodGCgtb3/NCdxf1qDk+br4k="></latexit>

[x * 2 for x in my_list]
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Collection-oriented languages are relatively general

Nature | Vol 585 | 17 September 2020 | 359

Scientific Python ecosystem
Python is an open-source, general-purpose interpreted programming 
language well suited to standard programming tasks such as cleaning 
data, interacting with web resources and parsing text. Adding fast array 
operations and linear algebra enables scientists to do all their work 
within a single programming language—one that has the advantage of 
being famously easy to learn and teach, as witnessed by its adoption 
as a primary learning language in many universities.

Even though NumPy is not part of Python’s standard library, it ben-
efits from a good relationship with the Python developers. Over the 
years, the Python language has added new features and special syntax 
so that NumPy would have a more succinct and easier-to-read array 
notation. However, because it is not part of the standard library, NumPy 
is able to dictate its own release policies and development patterns.

SciPy and Matplotlib are tightly coupled with NumPy in terms of his-
tory, development and use. SciPy provides fundamental algorithms for 
scientific computing, including mathematical, scientific and engineer-
ing routines. Matplotlib generates publication-ready figures and visu-
alizations. The combination of NumPy, SciPy and Matplotlib, together 
with an advanced interactive environment such as IPython20 or Jupy-
ter21, provides a solid foundation for array programming in Python. The 
scientific Python ecosystem (Fig. 2) builds on top of this foundation to 
provide several, widely used technique-specific libraries15,16,22, that in 
turn underlie numerous domain-specific projects23–28. NumPy, at the 
base of the ecosystem of array-aware libraries, sets documentation 
standards, provides array testing infrastructure and adds build sup-
port for Fortran and other compilers.

Many research groups have designed large, complex scientific librar-
ies that add application-specific functionality to the ecosystem. For 
example, the eht-imaging library29, developed by the Event Horizon 

Telescope collaboration for radio interferometry imaging, analysis 
and simulation, relies on many lower-level components of the scientific 
Python ecosystem. In particular, the EHT collaboration used this library 
for the first imaging of a black hole. Within eht-imaging, NumPy arrays 
are used to store and manipulate numerical data at every step in the 
processing chain: from raw data through calibration and image recon-
struction. SciPy supplies tools for general image-processing tasks such 
as filtering and image alignment, and scikit-image, an image-processing 
library that extends SciPy, provides higher-level functionality such 
as edge filters and Hough transforms. The ‘scipy.optimize’ module 
performs mathematical optimization. NetworkX22, a package for com-
plex network analysis, is used to verify image comparison consistency. 
Astropy23,24 handles standard astronomical file formats and computes 
time–coordinate transformations. Matplotlib is used to visualize data 
and to generate the final image of the black hole.

The interactive environment created by the array programming foun-
dation and the surrounding ecosystem of tools—inside of IPython or 
Jupyter—is ideally suited to exploratory data analysis. Users can fluidly 
inspect, manipulate and visualize their data, and rapidly iterate to refine 
programming statements. These statements are then stitched together 
into imperative or functional programs, or notebooks containing both 
computation and narrative. Scientific computing beyond exploratory 
work is often done in a text editor or an integrated development envi-
ronment (IDE) such as Spyder. This rich and productive environment 
has made Python popular for scientific research.

To complement this facility for exploratory work and rapid proto-
typing, NumPy has developed a culture of using time-tested software 
engineering practices to improve collaboration and reduce error30. This 
culture is not only adopted by leaders in the project but also enthusi-
astically taught to newcomers. The NumPy team was early to adopt 
distributed revision control and code review to improve collaboration 
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5

Collection-oriented languages are relatively general

Nature | Vol 585 | 17 September 2020 | 359

Scientific Python ecosystem
Python is an open-source, general-purpose interpreted programming 
language well suited to standard programming tasks such as cleaning 
data, interacting with web resources and parsing text. Adding fast array 
operations and linear algebra enables scientists to do all their work 
within a single programming language—one that has the advantage of 
being famously easy to learn and teach, as witnessed by its adoption 
as a primary learning language in many universities.

Even though NumPy is not part of Python’s standard library, it ben-
efits from a good relationship with the Python developers. Over the 
years, the Python language has added new features and special syntax 
so that NumPy would have a more succinct and easier-to-read array 
notation. However, because it is not part of the standard library, NumPy 
is able to dictate its own release policies and development patterns.

SciPy and Matplotlib are tightly coupled with NumPy in terms of his-
tory, development and use. SciPy provides fundamental algorithms for 
scientific computing, including mathematical, scientific and engineer-
ing routines. Matplotlib generates publication-ready figures and visu-
alizations. The combination of NumPy, SciPy and Matplotlib, together 
with an advanced interactive environment such as IPython20 or Jupy-
ter21, provides a solid foundation for array programming in Python. The 
scientific Python ecosystem (Fig. 2) builds on top of this foundation to 
provide several, widely used technique-specific libraries15,16,22, that in 
turn underlie numerous domain-specific projects23–28. NumPy, at the 
base of the ecosystem of array-aware libraries, sets documentation 
standards, provides array testing infrastructure and adds build sup-
port for Fortran and other compilers.

Many research groups have designed large, complex scientific librar-
ies that add application-specific functionality to the ecosystem. For 
example, the eht-imaging library29, developed by the Event Horizon 

Telescope collaboration for radio interferometry imaging, analysis 
and simulation, relies on many lower-level components of the scientific 
Python ecosystem. In particular, the EHT collaboration used this library 
for the first imaging of a black hole. Within eht-imaging, NumPy arrays 
are used to store and manipulate numerical data at every step in the 
processing chain: from raw data through calibration and image recon-
struction. SciPy supplies tools for general image-processing tasks such 
as filtering and image alignment, and scikit-image, an image-processing 
library that extends SciPy, provides higher-level functionality such 
as edge filters and Hough transforms. The ‘scipy.optimize’ module 
performs mathematical optimization. NetworkX22, a package for com-
plex network analysis, is used to verify image comparison consistency. 
Astropy23,24 handles standard astronomical file formats and computes 
time–coordinate transformations. Matplotlib is used to visualize data 
and to generate the final image of the black hole.

The interactive environment created by the array programming foun-
dation and the surrounding ecosystem of tools—inside of IPython or 
Jupyter—is ideally suited to exploratory data analysis. Users can fluidly 
inspect, manipulate and visualize their data, and rapidly iterate to refine 
programming statements. These statements are then stitched together 
into imperative or functional programs, or notebooks containing both 
computation and narrative. Scientific computing beyond exploratory 
work is often done in a text editor or an integrated development envi-
ronment (IDE) such as Spyder. This rich and productive environment 
has made Python popular for scientific research.

To complement this facility for exploratory work and rapid proto-
typing, NumPy has developed a culture of using time-tested software 
engineering practices to improve collaboration and reduce error30. This 
culture is not only adopted by leaders in the project but also enthusi-
astically taught to newcomers. The NumPy team was early to adopt 
distributed revision control and code review to improve collaboration 

cantera
Chemistry

Biopython
Biology

Astropy
Astronomy

simpeg
Geophysics

NLTK
Linguistics

QuantEcon
Economics

SciPy
Algorithms

Matplotlib
Plots

scikit-learn
Machine learning

NetworkX
Network analysis

pandas, statsmodels
Statistics

scikit-image
Image processing

PsychoPykhmer Qiime2 FiPy deepchem

librosaPyWavelets SunPy QuTiP yt

nibabel yellowbrickmne-python scikit-HEP

eht-imagingMDAnalysis iriscesium PyChrono

Foundation

Application-specific

Domain-specific

Technique-specific

Array ProtocolsNumPy API

Python
Language

IPython / Jupyter
Interactive environments

NumPy
Arrays

New array implementations

Fig. 2 | NumPy is the base of the scientific Python ecosystem. Essential libraries and projects that depend on NumPy’s API gain access to new array 
implementations that support NumPy’s array protocols (Fig. 3).

DSLs

“Array Programming with NumPy” Harris et al. (Nature)



5

Collection-oriented languages are relatively general

Nature | Vol 585 | 17 September 2020 | 359

Scientific Python ecosystem
Python is an open-source, general-purpose interpreted programming 
language well suited to standard programming tasks such as cleaning 
data, interacting with web resources and parsing text. Adding fast array 
operations and linear algebra enables scientists to do all their work 
within a single programming language—one that has the advantage of 
being famously easy to learn and teach, as witnessed by its adoption 
as a primary learning language in many universities.

Even though NumPy is not part of Python’s standard library, it ben-
efits from a good relationship with the Python developers. Over the 
years, the Python language has added new features and special syntax 
so that NumPy would have a more succinct and easier-to-read array 
notation. However, because it is not part of the standard library, NumPy 
is able to dictate its own release policies and development patterns.

SciPy and Matplotlib are tightly coupled with NumPy in terms of his-
tory, development and use. SciPy provides fundamental algorithms for 
scientific computing, including mathematical, scientific and engineer-
ing routines. Matplotlib generates publication-ready figures and visu-
alizations. The combination of NumPy, SciPy and Matplotlib, together 
with an advanced interactive environment such as IPython20 or Jupy-
ter21, provides a solid foundation for array programming in Python. The 
scientific Python ecosystem (Fig. 2) builds on top of this foundation to 
provide several, widely used technique-specific libraries15,16,22, that in 
turn underlie numerous domain-specific projects23–28. NumPy, at the 
base of the ecosystem of array-aware libraries, sets documentation 
standards, provides array testing infrastructure and adds build sup-
port for Fortran and other compilers.

Many research groups have designed large, complex scientific librar-
ies that add application-specific functionality to the ecosystem. For 
example, the eht-imaging library29, developed by the Event Horizon 

Telescope collaboration for radio interferometry imaging, analysis 
and simulation, relies on many lower-level components of the scientific 
Python ecosystem. In particular, the EHT collaboration used this library 
for the first imaging of a black hole. Within eht-imaging, NumPy arrays 
are used to store and manipulate numerical data at every step in the 
processing chain: from raw data through calibration and image recon-
struction. SciPy supplies tools for general image-processing tasks such 
as filtering and image alignment, and scikit-image, an image-processing 
library that extends SciPy, provides higher-level functionality such 
as edge filters and Hough transforms. The ‘scipy.optimize’ module 
performs mathematical optimization. NetworkX22, a package for com-
plex network analysis, is used to verify image comparison consistency. 
Astropy23,24 handles standard astronomical file formats and computes 
time–coordinate transformations. Matplotlib is used to visualize data 
and to generate the final image of the black hole.

The interactive environment created by the array programming foun-
dation and the surrounding ecosystem of tools—inside of IPython or 
Jupyter—is ideally suited to exploratory data analysis. Users can fluidly 
inspect, manipulate and visualize their data, and rapidly iterate to refine 
programming statements. These statements are then stitched together 
into imperative or functional programs, or notebooks containing both 
computation and narrative. Scientific computing beyond exploratory 
work is often done in a text editor or an integrated development envi-
ronment (IDE) such as Spyder. This rich and productive environment 
has made Python popular for scientific research.

To complement this facility for exploratory work and rapid proto-
typing, NumPy has developed a culture of using time-tested software 
engineering practices to improve collaboration and reduce error30. This 
culture is not only adopted by leaders in the project but also enthusi-
astically taught to newcomers. The NumPy team was early to adopt 
distributed revision control and code review to improve collaboration 

cantera
Chemistry

Biopython
Biology

Astropy
Astronomy

simpeg
Geophysics

NLTK
Linguistics

QuantEcon
Economics

SciPy
Algorithms

Matplotlib
Plots

scikit-learn
Machine learning

NetworkX
Network analysis

pandas, statsmodels
Statistics

scikit-image
Image processing

PsychoPykhmer Qiime2 FiPy deepchem

librosaPyWavelets SunPy QuTiP yt

nibabel yellowbrickmne-python scikit-HEP

eht-imagingMDAnalysis iriscesium PyChrono

Foundation

Application-specific

Domain-specific

Technique-specific

Array ProtocolsNumPy API

Python
Language

IPython / Jupyter
Interactive environments

NumPy
Arrays

New array implementations

Fig. 2 | NumPy is the base of the scientific Python ecosystem. Essential libraries and projects that depend on NumPy’s API gain access to new array 
implementations that support NumPy’s array protocols (Fig. 3).

DSLs

Collection-Oriented

(also DSLs?)

“Array Programming with NumPy” Harris et al. (Nature)



5

Collection-oriented languages are relatively general

Nature | Vol 585 | 17 September 2020 | 359

Scientific Python ecosystem
Python is an open-source, general-purpose interpreted programming 
language well suited to standard programming tasks such as cleaning 
data, interacting with web resources and parsing text. Adding fast array 
operations and linear algebra enables scientists to do all their work 
within a single programming language—one that has the advantage of 
being famously easy to learn and teach, as witnessed by its adoption 
as a primary learning language in many universities.

Even though NumPy is not part of Python’s standard library, it ben-
efits from a good relationship with the Python developers. Over the 
years, the Python language has added new features and special syntax 
so that NumPy would have a more succinct and easier-to-read array 
notation. However, because it is not part of the standard library, NumPy 
is able to dictate its own release policies and development patterns.

SciPy and Matplotlib are tightly coupled with NumPy in terms of his-
tory, development and use. SciPy provides fundamental algorithms for 
scientific computing, including mathematical, scientific and engineer-
ing routines. Matplotlib generates publication-ready figures and visu-
alizations. The combination of NumPy, SciPy and Matplotlib, together 
with an advanced interactive environment such as IPython20 or Jupy-
ter21, provides a solid foundation for array programming in Python. The 
scientific Python ecosystem (Fig. 2) builds on top of this foundation to 
provide several, widely used technique-specific libraries15,16,22, that in 
turn underlie numerous domain-specific projects23–28. NumPy, at the 
base of the ecosystem of array-aware libraries, sets documentation 
standards, provides array testing infrastructure and adds build sup-
port for Fortran and other compilers.

Many research groups have designed large, complex scientific librar-
ies that add application-specific functionality to the ecosystem. For 
example, the eht-imaging library29, developed by the Event Horizon 

Telescope collaboration for radio interferometry imaging, analysis 
and simulation, relies on many lower-level components of the scientific 
Python ecosystem. In particular, the EHT collaboration used this library 
for the first imaging of a black hole. Within eht-imaging, NumPy arrays 
are used to store and manipulate numerical data at every step in the 
processing chain: from raw data through calibration and image recon-
struction. SciPy supplies tools for general image-processing tasks such 
as filtering and image alignment, and scikit-image, an image-processing 
library that extends SciPy, provides higher-level functionality such 
as edge filters and Hough transforms. The ‘scipy.optimize’ module 
performs mathematical optimization. NetworkX22, a package for com-
plex network analysis, is used to verify image comparison consistency. 
Astropy23,24 handles standard astronomical file formats and computes 
time–coordinate transformations. Matplotlib is used to visualize data 
and to generate the final image of the black hole.

The interactive environment created by the array programming foun-
dation and the surrounding ecosystem of tools—inside of IPython or 
Jupyter—is ideally suited to exploratory data analysis. Users can fluidly 
inspect, manipulate and visualize their data, and rapidly iterate to refine 
programming statements. These statements are then stitched together 
into imperative or functional programs, or notebooks containing both 
computation and narrative. Scientific computing beyond exploratory 
work is often done in a text editor or an integrated development envi-
ronment (IDE) such as Spyder. This rich and productive environment 
has made Python popular for scientific research.

To complement this facility for exploratory work and rapid proto-
typing, NumPy has developed a culture of using time-tested software 
engineering practices to improve collaboration and reduce error30. This 
culture is not only adopted by leaders in the project but also enthusi-
astically taught to newcomers. The NumPy team was early to adopt 
distributed revision control and code review to improve collaboration 

cantera
Chemistry

Biopython
Biology

Astropy
Astronomy

simpeg
Geophysics

NLTK
Linguistics

QuantEcon
Economics

SciPy
Algorithms

Matplotlib
Plots

scikit-learn
Machine learning

NetworkX
Network analysis

pandas, statsmodels
Statistics

scikit-image
Image processing

PsychoPykhmer Qiime2 FiPy deepchem

librosaPyWavelets SunPy QuTiP yt

nibabel yellowbrickmne-python scikit-HEP

eht-imagingMDAnalysis iriscesium PyChrono

Foundation

Application-specific

Domain-specific

Technique-specific

Array ProtocolsNumPy API

Python
Language

IPython / Jupyter
Interactive environments

NumPy
Arrays

New array implementations

Fig. 2 | NumPy is the base of the scientific Python ecosystem. Essential libraries and projects that depend on NumPy’s API gain access to new array 
implementations that support NumPy’s array protocols (Fig. 3).

DSLs

Collection-Oriented

(also DSLs?)

Fragmentation is forcing

implementation ecosystem

“Array Programming with NumPy” Harris et al. (Nature)



6

We need collections for performance due to Amdahl’s law

Plot from Wikipedia
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We need collections for performance due to Amdahl’s law
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But many applications are data-rich
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Avoiding the von Neumann model of languages

c := 0 
for i := 1 step 1 until n do 
  c := c + a[i] x b[i]

Imperative Form
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Avoiding the von Neumann model of languages

c := 0 
for i := 1 step 1 until n do 
  c := c + a[i] x b[i]

transfers one scalar value to memory:

von Neumann bottleneck in software


the assignment transfers one value to memory

poor world of

statements

Imperative Form

c = sum(a[0:n] * b[0:n])

Functional Form

produces a vector



• A record-at-a-time user interface forces the programmer to do 
manual query optimization, and this is often hard. 

• Set-a-time languages are good, regardless of the data model, 
since they offer much improved physical data independence. 

• The programming language and database communities have 
long recognized that aggregate data structures and general 
operations on them give great flexibility to programmers and 
language implementors.

8

Collection-oriented operations let us operate on 
collections as a whole

“What Goes Around Comes Around” Stonebraker and Hellerstein

“Collection-Oriented Languages” Sipelstein and Blelloch
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Collection-Oriented Languages

A collection-oriented programming model provides collective operations 
on some collection/abstract data structure

Lists 

Lisp [1958]

Sets 

SETL 
[1970]

Nested Sequences

NESL [1994]

Relations

Relational Algebra [1970]

Arrays

APL [1962]


NumPy [2020]
Grids


Halide [2012]

Matrices and Tensors

Matlab 1979], Taco 2017

Graphs

GraphLab [2010]

Vectors

Vector Model 1990

Meshes

2011
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Features of collections

• Ordering: unordered, sequence, or grid-ordered? 

• Regularity: Can the collection represent irregularity/sparsity? 

• Nesting: nested or flat collections? 

• Random-access: can individual elements be accessed?
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The APL Programming Language

n ← 4 5 6 7 i.e., mkArray
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Array Programming with NumPy

“Array Programming with NumPy” Harris et al. (Nature)

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array. 
An array has a single data type, and each element of an array occupies 
the same number of bytes in memory. Examples of data types include 
real and complex numbers (of lower and higher precision), strings, 
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along 
each axis, and the number of axes is the dimensionality of the array. 
For example, a vector of numbers can be stored as a one-dimensional 
array of shape N, whereas colour videos are four-dimensional arrays 
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores 
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional 
array of floating-point numbers with shape (4, 3), where each element 
occupies 8 bytes in memory. To move between consecutive columns, 
we need to jump forward 8 bytes in memory, and to access the next row, 
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy 
can store arrays in either C or Fortran memory order, iterating first over 
either rows or columns. This allows external libraries written in those 
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and × 
for vectorized operations and @ for matrix multiplication), as well 
as ‘array-aware functions’; together, these provide an easily readable, 
expressive, high-level API for array programming while NumPy deals 
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements 
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed 
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a 
subarray returns a ‘view’ on the original array such that data are shared 
between the two arrays. This provides a powerful way to operate on 
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that 
perform vectorized calculations on arrays, including arithmetic, 

statistics and trigonometry (Fig. 1d). Vectorization—operating on 
entire arrays rather than their individual elements—is essential to array 
programming. This means that operations that would take many tens 
of lines to express in languages such as C can often be implemented as 
a single, clear Python expression. This results in concise code and frees 
users to focus on the details of their analysis, while NumPy handles  
looping over array elements near-optimally—for example, taking 
strides into consideration to best utilize the computer’s fast cache 
memory.

When performing a vectorized operation (such as addition) on two 
arrays with the same shape, it is clear what should happen. Through 
‘broadcasting’ NumPy allows the dimensions to differ, and produces 
results that appeal to intuition. A trivial example is the addition of a 
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating 
a grid of coordinates. In broadcasting, one or both arrays are virtually 
duplicated (that is, without copying any data in memory), so that the 
shapes of the operands match (Fig. 1d). Broadcasting is also applied 
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum, 
perform element-by-element ‘reductions’, aggregating results across 
one, multiple or all axes of a single array. For example, summing an 
n-dimensional array over d axes results in an array of dimension n − d 
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping, 
concatenating and padding arrays; searching, sorting and counting 
data; and reading and writing files. It provides extensive support for 
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using 
one of several backends such as OpenBLAS18,19 or Intel MKL optimized 
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety 
of array-aware utility functions forms a productive and powerfully 
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
       [-1.5, -1.5, -1.5],
       [ 1.5,  1.5,  1.5],
       [ 4.5,  4.5,  4.5]])

a Data structure g Example

x =

0 1 2
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Fig. 1 | The NumPy array incorporates several fundamental array concepts. 
a, The NumPy array data structure and its associated metadata fields.  
b, Indexing an array with slices and steps. These operations return a ‘view’ of 
the original data. c, Indexing an array with masks, scalar coordinates or other 
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an 
array is indexed with other arrays; this broadcasts the indexing arguments 

before performing the lookup. d, Vectorization efficiently applies operations 
to groups of elements. e, Broadcasting in the multiplication of two-dimensional  
arrays. f, Reduction operations act along one or more axes. In this example,  
an array is summed along select axes to produce a vector, or along two axes 
consecutively to produce a scalar. g, Example NumPy code, illustrating some of 
these concepts.
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The data type describes the nature of elements stored in an array. 
An array has a single data type, and each element of an array occupies 
the same number of bytes in memory. Examples of data types include 
real and complex numbers (of lower and higher precision), strings, 
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along 
each axis, and the number of axes is the dimensionality of the array. 
For example, a vector of numbers can be stored as a one-dimensional 
array of shape N, whereas colour videos are four-dimensional arrays 
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores 
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional 
array of floating-point numbers with shape (4, 3), where each element 
occupies 8 bytes in memory. To move between consecutive columns, 
we need to jump forward 8 bytes in memory, and to access the next row, 
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy 
can store arrays in either C or Fortran memory order, iterating first over 
either rows or columns. This allows external libraries written in those 
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and × 
for vectorized operations and @ for matrix multiplication), as well 
as ‘array-aware functions’; together, these provide an easily readable, 
expressive, high-level API for array programming while NumPy deals 
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements 
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed 
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a 
subarray returns a ‘view’ on the original array such that data are shared 
between the two arrays. This provides a powerful way to operate on 
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that 
perform vectorized calculations on arrays, including arithmetic, 

statistics and trigonometry (Fig. 1d). Vectorization—operating on 
entire arrays rather than their individual elements—is essential to array 
programming. This means that operations that would take many tens 
of lines to express in languages such as C can often be implemented as 
a single, clear Python expression. This results in concise code and frees 
users to focus on the details of their analysis, while NumPy handles  
looping over array elements near-optimally—for example, taking 
strides into consideration to best utilize the computer’s fast cache 
memory.

When performing a vectorized operation (such as addition) on two 
arrays with the same shape, it is clear what should happen. Through 
‘broadcasting’ NumPy allows the dimensions to differ, and produces 
results that appeal to intuition. A trivial example is the addition of a 
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating 
a grid of coordinates. In broadcasting, one or both arrays are virtually 
duplicated (that is, without copying any data in memory), so that the 
shapes of the operands match (Fig. 1d). Broadcasting is also applied 
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum, 
perform element-by-element ‘reductions’, aggregating results across 
one, multiple or all axes of a single array. For example, summing an 
n-dimensional array over d axes results in an array of dimension n − d 
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping, 
concatenating and padding arrays; searching, sorting and counting 
data; and reading and writing files. It provides extensive support for 
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using 
one of several backends such as OpenBLAS18,19 or Intel MKL optimized 
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety 
of array-aware utility functions forms a productive and powerfully 
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)
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Fig. 1 | The NumPy array incorporates several fundamental array concepts. 
a, The NumPy array data structure and its associated metadata fields.  
b, Indexing an array with slices and steps. These operations return a ‘view’ of 
the original data. c, Indexing an array with masks, scalar coordinates or other 
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an 
array is indexed with other arrays; this broadcasts the indexing arguments 

before performing the lookup. d, Vectorization efficiently applies operations 
to groups of elements. e, Broadcasting in the multiplication of two-dimensional  
arrays. f, Reduction operations act along one or more axes. In this example,  
an array is summed along select axes to produce a vector, or along two axes 
consecutively to produce a scalar. g, Example NumPy code, illustrating some of 
these concepts.
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of array-aware utility functions forms a productive and powerfully 
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
       [-1.5, -1.5, -1.5],
       [ 1.5,  1.5,  1.5],
       [ 4.5,  4.5,  4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2
4 5
7 8

00
33
66

x[:,::2]→ with slices
with steps

0 2
3 5
6 8
9 11

0 11 2
3 44 5
6 77 8
9 1010 11

Slices are start:end:step,
any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2
1 1 0

x
,

1 1
2 2

1 0
1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2] 

Fig. 1 | The NumPy array incorporates several fundamental array concepts. 
a, The NumPy array data structure and its associated metadata fields.  
b, Indexing an array with slices and steps. These operations return a ‘view’ of 
the original data. c, Indexing an array with masks, scalar coordinates or other 
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an 
array is indexed with other arrays; this broadcasts the indexing arguments 

before performing the lookup. d, Vectorization efficiently applies operations 
to groups of elements. e, Broadcasting in the multiplication of two-dimensional  
arrays. f, Reduction operations act along one or more axes. In this example,  
an array is summed along select axes to produce a vector, or along two axes 
consecutively to produce a scalar. g, Example NumPy code, illustrating some of 
these concepts.

358 | Nature | Vol 585 | 17 September 2020

Review

The data type describes the nature of elements stored in an array. 
An array has a single data type, and each element of an array occupies 
the same number of bytes in memory. Examples of data types include 
real and complex numbers (of lower and higher precision), strings, 
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along 
each axis, and the number of axes is the dimensionality of the array. 
For example, a vector of numbers can be stored as a one-dimensional 
array of shape N, whereas colour videos are four-dimensional arrays 
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores 
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional 
array of floating-point numbers with shape (4, 3), where each element 
occupies 8 bytes in memory. To move between consecutive columns, 
we need to jump forward 8 bytes in memory, and to access the next row, 
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy 
can store arrays in either C or Fortran memory order, iterating first over 
either rows or columns. This allows external libraries written in those 
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and × 
for vectorized operations and @ for matrix multiplication), as well 
as ‘array-aware functions’; together, these provide an easily readable, 
expressive, high-level API for array programming while NumPy deals 
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To complement the array syntax, NumPy includes functions that 
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Other array-aware functions, such as sum, mean and maximum, 
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one of several backends such as OpenBLAS18,19 or Intel MKL optimized 
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looping over array elements near-optimally—for example, taking 
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‘broadcasting’ NumPy allows the dimensions to differ, and produces 
results that appeal to intuition. A trivial example is the addition of a 
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating 
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duplicated (that is, without copying any data in memory), so that the 
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one, multiple or all axes of a single array. For example, summing an 
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generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using 
one of several backends such as OpenBLAS18,19 or Intel MKL optimized 
for the CPUs at hand (see Supplementary Methods for more details).
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plex examples such as scaling each column of an array or generating 
a grid of coordinates. In broadcasting, one or both arrays are virtually 
duplicated (that is, without copying any data in memory), so that the 
shapes of the operands match (Fig. 1d). Broadcasting is also applied 
when an array is indexed using arrays of indices (Fig. 1c).
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perform element-by-element ‘reductions’, aggregating results across 
one, multiple or all axes of a single array. For example, summing an 
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(Fig. 1f).
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data; and reading and writing files. It provides extensive support for 
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using 
one of several backends such as OpenBLAS18,19 or Intel MKL optimized 
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety 
of array-aware utility functions forms a productive and powerfully 
expressive array programming language.
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before performing the lookup. d, Vectorization efficiently applies operations 
to groups of elements. e, Broadcasting in the multiplication of two-dimensional  
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To complement the array syntax, NumPy includes functions that 
perform vectorized calculations on arrays, including arithmetic, 
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programming. This means that operations that would take many tens 
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of lines to express in languages such as C can often be implemented as 
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users to focus on the details of their analysis, while NumPy handles  
looping over array elements near-optimally—for example, taking 
strides into consideration to best utilize the computer’s fast cache 
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When performing a vectorized operation (such as addition) on two 
arrays with the same shape, it is clear what should happen. Through 
‘broadcasting’ NumPy allows the dimensions to differ, and produces 
results that appeal to intuition. A trivial example is the addition of a 
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating 
a grid of coordinates. In broadcasting, one or both arrays are virtually 
duplicated (that is, without copying any data in memory), so that the 
shapes of the operands match (Fig. 1d). Broadcasting is also applied 
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one, multiple or all axes of a single array. For example, summing an 
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data; and reading and writing files. It provides extensive support for 
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using 
one of several backends such as OpenBLAS18,19 or Intel MKL optimized 
for the CPUs at hand (see Supplementary Methods for more details).
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sentation, a syntax that closely mimics mathematics, and a variety 
of array-aware utility functions forms a productive and powerfully 
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between the two arrays. This provides a powerful way to operate on 
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that 
perform vectorized calculations on arrays, including arithmetic, 

statistics and trigonometry (Fig. 1d). Vectorization—operating on 
entire arrays rather than their individual elements—is essential to array 
programming. This means that operations that would take many tens 
of lines to express in languages such as C can often be implemented as 
a single, clear Python expression. This results in concise code and frees 
users to focus on the details of their analysis, while NumPy handles  
looping over array elements near-optimally—for example, taking 
strides into consideration to best utilize the computer’s fast cache 
memory.

When performing a vectorized operation (such as addition) on two 
arrays with the same shape, it is clear what should happen. Through 
‘broadcasting’ NumPy allows the dimensions to differ, and produces 
results that appeal to intuition. A trivial example is the addition of a 
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating 
a grid of coordinates. In broadcasting, one or both arrays are virtually 
duplicated (that is, without copying any data in memory), so that the 
shapes of the operands match (Fig. 1d). Broadcasting is also applied 
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum, 
perform element-by-element ‘reductions’, aggregating results across 
one, multiple or all axes of a single array. For example, summing an 
n-dimensional array over d axes results in an array of dimension n − d 
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping, 
concatenating and padding arrays; searching, sorting and counting 
data; and reading and writing files. It provides extensive support for 
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using 
one of several backends such as OpenBLAS18,19 or Intel MKL optimized 
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety 
of array-aware utility functions forms a productive and powerfully 
expressive array programming language.
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Fig. 1 | The NumPy array incorporates several fundamental array concepts. 
a, The NumPy array data structure and its associated metadata fields.  
b, Indexing an array with slices and steps. These operations return a ‘view’ of 
the original data. c, Indexing an array with masks, scalar coordinates or other 
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an 
array is indexed with other arrays; this broadcasts the indexing arguments 

before performing the lookup. d, Vectorization efficiently applies operations 
to groups of elements. e, Broadcasting in the multiplication of two-dimensional  
arrays. f, Reduction operations act along one or more axes. In this example,  
an array is summed along select axes to produce a vector, or along two axes 
consecutively to produce a scalar. g, Example NumPy code, illustrating some of 
these concepts.
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one of several backends such as OpenBLAS18,19 or Intel MKL optimized 
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either rows or columns. This allows external libraries written in those 
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for vectorized operations and @ for matrix multiplication), as well 
as ‘array-aware functions’; together, these provide an easily readable, 
expressive, high-level API for array programming while NumPy deals 
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using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a 
subarray returns a ‘view’ on the original array such that data are shared 
between the two arrays. This provides a powerful way to operate on 
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To complement the array syntax, NumPy includes functions that 
perform vectorized calculations on arrays, including arithmetic, 

statistics and trigonometry (Fig. 1d). Vectorization—operating on 
entire arrays rather than their individual elements—is essential to array 
programming. This means that operations that would take many tens 
of lines to express in languages such as C can often be implemented as 
a single, clear Python expression. This results in concise code and frees 
users to focus on the details of their analysis, while NumPy handles  
looping over array elements near-optimally—for example, taking 
strides into consideration to best utilize the computer’s fast cache 
memory.

When performing a vectorized operation (such as addition) on two 
arrays with the same shape, it is clear what should happen. Through 
‘broadcasting’ NumPy allows the dimensions to differ, and produces 
results that appeal to intuition. A trivial example is the addition of a 
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating 
a grid of coordinates. In broadcasting, one or both arrays are virtually 
duplicated (that is, without copying any data in memory), so that the 
shapes of the operands match (Fig. 1d). Broadcasting is also applied 
when an array is indexed using arrays of indices (Fig. 1c).
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perform element-by-element ‘reductions’, aggregating results across 
one, multiple or all axes of a single array. For example, summing an 
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data; and reading and writing files. It provides extensive support for 
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using 
one of several backends such as OpenBLAS18,19 or Intel MKL optimized 
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety 
of array-aware utility functions forms a productive and powerfully 
expressive array programming language.
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Fig. 1 | The NumPy array incorporates several fundamental array concepts. 
a, The NumPy array data structure and its associated metadata fields.  
b, Indexing an array with slices and steps. These operations return a ‘view’ of 
the original data. c, Indexing an array with masks, scalar coordinates or other 
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an 
array is indexed with other arrays; this broadcasts the indexing arguments 

before performing the lookup. d, Vectorization efficiently applies operations 
to groups of elements. e, Broadcasting in the multiplication of two-dimensional  
arrays. f, Reduction operations act along one or more axes. In this example,  
an array is summed along select axes to produce a vector, or along two axes 
consecutively to produce a scalar. g, Example NumPy code, illustrating some of 
these concepts.
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The data type describes the nature of elements stored in an array. 
An array has a single data type, and each element of an array occupies 
the same number of bytes in memory. Examples of data types include 
real and complex numbers (of lower and higher precision), strings, 
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along 
each axis, and the number of axes is the dimensionality of the array. 
For example, a vector of numbers can be stored as a one-dimensional 
array of shape N, whereas colour videos are four-dimensional arrays 
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores 
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional 
array of floating-point numbers with shape (4, 3), where each element 
occupies 8 bytes in memory. To move between consecutive columns, 
we need to jump forward 8 bytes in memory, and to access the next row, 
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy 
can store arrays in either C or Fortran memory order, iterating first over 
either rows or columns. This allows external libraries written in those 
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and × 
for vectorized operations and @ for matrix multiplication), as well 
as ‘array-aware functions’; together, these provide an easily readable, 
expressive, high-level API for array programming while NumPy deals 
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements 
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed 
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a 
subarray returns a ‘view’ on the original array such that data are shared 
between the two arrays. This provides a powerful way to operate on 
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that 
perform vectorized calculations on arrays, including arithmetic, 

statistics and trigonometry (Fig. 1d). Vectorization—operating on 
entire arrays rather than their individual elements—is essential to array 
programming. This means that operations that would take many tens 
of lines to express in languages such as C can often be implemented as 
a single, clear Python expression. This results in concise code and frees 
users to focus on the details of their analysis, while NumPy handles  
looping over array elements near-optimally—for example, taking 
strides into consideration to best utilize the computer’s fast cache 
memory.

When performing a vectorized operation (such as addition) on two 
arrays with the same shape, it is clear what should happen. Through 
‘broadcasting’ NumPy allows the dimensions to differ, and produces 
results that appeal to intuition. A trivial example is the addition of a 
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating 
a grid of coordinates. In broadcasting, one or both arrays are virtually 
duplicated (that is, without copying any data in memory), so that the 
shapes of the operands match (Fig. 1d). Broadcasting is also applied 
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum, 
perform element-by-element ‘reductions’, aggregating results across 
one, multiple or all axes of a single array. For example, summing an 
n-dimensional array over d axes results in an array of dimension n − d 
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping, 
concatenating and padding arrays; searching, sorting and counting 
data; and reading and writing files. It provides extensive support for 
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using 
one of several backends such as OpenBLAS18,19 or Intel MKL optimized 
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety 
of array-aware utility functions forms a productive and powerfully 
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
       [-1.5, -1.5, -1.5],
       [ 1.5,  1.5,  1.5],
       [ 4.5,  4.5,  4.5]])
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Fig. 1 | The NumPy array incorporates several fundamental array concepts. 
a, The NumPy array data structure and its associated metadata fields.  
b, Indexing an array with slices and steps. These operations return a ‘view’ of 
the original data. c, Indexing an array with masks, scalar coordinates or other 
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an 
array is indexed with other arrays; this broadcasts the indexing arguments 

before performing the lookup. d, Vectorization efficiently applies operations 
to groups of elements. e, Broadcasting in the multiplication of two-dimensional  
arrays. f, Reduction operations act along one or more axes. In this example,  
an array is summed along select axes to produce a vector, or along two axes 
consecutively to produce a scalar. g, Example NumPy code, illustrating some of 
these concepts.
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Sally 7264 EE

George 1379 CS
Mary 1733 ME
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department manager
CS George
EE Mary

employees departments

Projection ( )Π Πname,department employees
name department
Harry CS
Sally EE

George CS
Mary ME
Rita CS

Selection ( )σ σdepartment=CS employees
Namename id department
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Harry 3245 CS George
Sally 7264 EE Mary

George 1379 CS George
Rita 2357 CS George
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Graph operations

(a) Initial state (b) State after A and B have fired

Figure 3. Conflicts in event-driven simulation

ity exhibited by some irregular algorithms. This application simu-
lates a network of processing stations that communicate by sending
messages along FIFO links. When a station processes a message,
its internal state may be updated, and it may produce zero or more
messages on its outgoing links. Sequential event-driven simulation
is implemented by maintaining a global priority queue of events
called the event list and processing the earliest event at each step.
In this irregular algorithm, activities correspond to the processing
of events.

In principle, event-driven simulation can be performed in paral-
lel by processing multiple events from the event list simultaneously,
rather than one event at a time. However, unlike in Delaunay mesh
refinement, in which it was legal to process bad triangles concur-
rently provided they were well-separated in the mesh, it may not be
legal to process two events in parallel even if their stations are far
apart in the network. Figure 3 demonstrates this. Suppose that in
a sequential implementation, node A fires and produces a message
time-stamped 3, and then node B fires and produces a message
time-stamped 4. Notice that node C must consume this message
before it consumes the message time-stamped 5. Therefore, in Fig-
ure 3(a), the events at A and C cannot be processed in parallel even
though the stations are far apart in the network. However, notice
that if the message from B to C had a time-stamp greater than 5, it
would have been legal to process in parallel the events at nodes A
and C. To determine if two activities can be performed in parallel
at a given point in the execution of this algorithm, we need a crystal
ball to look into the future!

In short, static dependence graphs are inadequate abstractions
for irregular algorithms for the following reasons.
1. Dependences between activities in irregular algorithms are usu-

ally complex functions of runtime data values, so they cannot
be usefully captured by a static dependence graph.

2. Many irregular algorithms exhibit don’t-care non-determinism,
but this is hard to model with dependence graphs.

3. Whether or not it is safe to execute two activities in parallel at a
given point in the computation may depend on activities created
later in the computation. It is not clear how one models this with
dependence graphs.

3. Operator formulation of algorithms
These problems can be addressed by a data-centric formulation of
algorithms, called the operator formulation, in which an algorithm
is viewed in terms of its action on data structures. The operator
formulation can be defined for any abstract data type, and we will
use the graph ADT to illustrate the key ideas. As is standard, a
graph is (i) a set of nodes V , and (ii) a set of edges E ✓ V ⇥ V

between these nodes. Graphs can be directed or undirected, and
nodes and edges may be labeled with values.

We will not discuss a particular concrete representation for the
graph ADT. The implementation is free to choose the concrete
representation that is best suited for a particular algorithm and
machine: for example, cliques may be represented using dense
arrays, while sparse graphs may be represented using adjacency
lists. This is similar to the approach taken in relational databases:
SQL programmers use the relation ADT in writing programs, and
the underlying DBMS system is free to implement the ADT using
B-trees, hash tables, and other concrete data structures.

Figure 4. Active elements and neighborhoods

3.1 Active elements, neighborhoods and ordering
Active elements: At each point during the execution of a graph
algorithm, there are certain nodes or edges in the graph where
computation might be performed. These nodes and edges are called
active elements; to keep the discussion simple, we assume from
here on that active elements are nodes. To process an active node,
an operator is applied to it, and the resulting computation is called
an activity.

Neighborhoods: Performing an activity may require reading or
writing other nodes and edges in the graph. Borrowing terminology
from the literature on cellular automata, we refer to the set of nodes
and edges that are read or written while performing an activity as
the neighborhood of that activity. Figure 4 shows an undirected
sparse graph in which the filled nodes represent active nodes, and
shaded regions represent the neighborhoods of those active nodes.
Note that in general, the neighborhood of an active node is distinct
from its neighbors in the graph.

Ordering: In general, there are many active nodes in a graph,
so a sequential implementation must pick one of them and perform
the appropriate activity. In some algorithms such as Delaunay mesh
refinement, the implementation is allowed to pick any active node
for execution. We call these unordered algorithms. In contrast,
some algorithms dictate an order in which active nodes must be
processed by a sequential implementation; we call these ordered
algorithms. Event-driven simulation is an example: the sequential
algorithm for event-driven simulation processes messages in global
time order. The order on active nodes may be a partial order.

We illustrate these concepts using the algorithms from Sec-
tion 2. In DMR, the mesh is usually represented by a graph in which
nodes represent triangles and edges represent adjacency of trian-
gles. The active nodes in this algorithm are the nodes representing
bad triangles, and the neighborhood of an active node is the cav-
ity of that bad triangle. In event-driven simulation, active nodes are
stations that have messages on their input channels, and neighbor-
hoods contain only the active node.

3.2 From algorithms to programs
A natural way to write these algorithms is to use worklists to keep
track of active nodes. However, programs written directly in terms
of worklists, such as the one in Figure 2, encode a particular or-
der of processing worklist items and do not express the don’t-care
nondeterminism in unordered algorithms. To address this problem,
we can use the Galois programming model, which is a sequential,
object-oriented programming model (such as sequential Java), aug-
mented with two Galois set iterators [40]:

DEFINITION 1. Galois set iterators:

• Unordered-set iterator: foreach (e in Set S) {B(e)}
The loop body B(e) is executed for each element e of set S.
The order in which iterations execute is indeterminate and can
be chosen by the implementation. There may be dependences

Left figure from Tao of Parallelism in Algorithms (Pingali et al.)

Simultaneous operations on 
different parts of the graph

push

pull

edge

functions
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Relations, Graphs, and Algebra: No glove fits all

1

2

4

3

6
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7

Names City Age
Peter Boston 54
Mary San Fransisco 35
Paul New York 23

Adam Seattle 84
Hilde Boston 19
Bob Chicago 76
Sam Portland 32

Angela Los Angeles 62

Tensors

Relations

Graphs

Ideal for combining data to form systems

Ideal for global operations

Ideal for local operations
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It is critical to be able to compose languages and 
abstractions

Amaz
Gre

Po

Tensors

Names City Age

Peter Boston 54

Mary San Fransisco 35

Paul New York 23
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Example: Relations and Tensors

name department manager
Harry CS George
Sally EE Mary

George CS George
Rita CS George

Harry

Sally

George

Rita

CS

EE

Tensor Assembly

George Mary

x

x
x

x

x
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Example: Relations and Graphs

name1 name2
Harry Sally
Sally Harry

George Rita
Rita George
Sally Rita
Rita Sally

name department
Harry CS
Sally EE

George CS
Rita CS

⋈

George 
(CS)

Harry 
(CS)

Sally 
(EE)

Rita 
(CS)
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Statics Triangular Neo-Hookean FEM Simulation

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% precompute triangle areas 
func precompute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply precompute_area to triangles; 
end

Hypergraph
1

2

4

3

6

5

7

⨉
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element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end
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end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% precompute triangle areas 
func precompute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply precompute_area to triangles; 
end
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element Vertex 
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  v  : vector[3](float);   % velocity 
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end 
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  u  : float;              % shear modulus 
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end 
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element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end
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element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% precompute triangle areas 
func precompute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
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extern triangles : set{Triangle}(verts, verts, verts);
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element Vertex 
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end 

element Triangle 
  u  : float;              % shear modulus 
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  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 
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extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% precompute triangle areas 
func precompute_area(inout t : Triangle, v : (Vertex*3)) 
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end 
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element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 24
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% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end
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element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
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end 24

Behavior
1

2

4

3

6

5

7

⨉

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25

Assembly1

2

4

3

6

5

7

⨉

    K = map triangle_stiffness to triangles reduce +;    K = map triangle_stiffness to triangles reduce +;

1

2

4

3

6

5

7

Statics Triangular Neo-Hookean FEM Simulation



% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25

Assembly1

2

4

3

6

5

7

⨉
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    // assemble stiffness matrix 
    // assemble force vector 
    // compute new position 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 25
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    K = map triangle_stiffness to triangles reduce +;
    f = map triangle_force     to triangles reduce +;

% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end
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element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end

% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    K = map triangle_stiffness to triangles reduce +; 
    f = map triangle_force     to triangles reduce +; 
    // compute new position 
  end 
end 26
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element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end

% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    K = map triangle_stiffness to triangles reduce +; 
    f = map triangle_force     to triangles reduce +; 
    // compute new position 
  end 
end 26
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element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end

% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    K = map triangle_stiffness to triangles reduce +; 
    f = map triangle_force     to triangles reduce +; 
    // compute new position 
  end 
end 26
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element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end

% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    K = map triangle_stiffness to triangles reduce +; 
    f = map triangle_force     to triangles reduce +; 
    // compute new position 
  end 
end 27
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xt+1 = xt +K�1(fexternal � f)

    verts.x = verts.x + K \ (verts.fe - f);

Update graph fields
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% computes the stiffness of a triangle 
func triangle_stiffness(t : Triangle, v : (Vertex*3)) 
    -> K : matrix[verts,verts](matrix[3,3](float)) 
  for i in 0:3 
    for j in 0:3 
      K(v(i),v(j)) += compute_stiffness(t,v,i,j); 
    end 
  end 
end 

% computes the force of a triangle on its vertices 
func triangle_force(t : Triangle, v : (Vertex*3)) 
    -> f : vector[verts](vector[3](float)) 
  for i in 0:3 
    f(v(i)) += compute_force(t,v,i); 
  end 
end 

% newton's method 
export func newton_method() 
  while abs(f - verts.fe) > 1e-6 
    K = map triangle_stiffness to triangles reduce +; 
    f = map triangle_force     to triangles reduce +; 
    verts.x = verts.x + K \ (verts.fe - f); 
  end 
end

element Vertex 
  x  : vector[3](float);   % position 
  v  : vector[3](float);   % velocity 
  fe : vector[3](float);   % external force 
end 

element Triangle 
  u  : float;              % shear modulus 
  l  : float;              % lame's first parameter 
  W  : float;              % volume 
  B  : matrix[3,3](float); % strain-displacement 
end 

% graph vertices and triangle hyperedges 
extern verts     : set{Vertex}; 
extern triangles : set{Triangle}(verts, verts, verts); 

% compute triangle area 
func compute_area(inout t : Triangle, v : (Vertex*3)) 
  t.B = compute_B(v); 
  t.W = det(B) / 2.0; 
end 

export func init() 
  apply compute_area to triangles; 
end 27
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28

Collection-Oriented Languages

A collection-oriented programming model provides collective operations 
on some collection/abstract data structure

Lists 

Lisp M58

Sets 

SETL S70

Nested Sequences

NESL B94

Relations

Relational Algebra C70,

Arrays

APL I62

NumPy

Grids

Sejits S09, Halide

Matrices and Tensors

Matlab M79, taco K17

Graphs

GraphLab L10

Vectors

Vector Model B90

Meshes

Liszt D11


