Lecture 6 — Sparse Programming Systems

Stanford CS343D (Winter 2024) Fred Kjolstad

Terminology: Regular and Irregular

Fully Connected System

Regular System

Irregular System

З

Three classes of irregular systems

Fractional Sparsity

Power Law Graphs

How sparse is graph/relational data? Often asymptotically sparse.

Assume an average degree of 150 (e.g., 150 friends)

Conditioned Meshes

At 10,000 rows: $\frac{150 \cdot 10,000}{10,000^2} = 1.5\%$ nonzeros

Power-law graphs

At 100,000 rows: $\frac{150 \cdot 100,000}{100,000^2} = 0.15\%$ nonzeros

Nonzeros: O(n)

Matrix components: $O(n^2)$ Fraction of nonzeros: O(1/n)

Each matrix row then has 150 nonzeros

Terminology: Dense and Sparse

Dense loop iteration space

$$y = Ax$$

Sparse loop iteration space

$$y = Ax$$

Three sparse applications areas

Relations

Names	City	Age	
Peter	Boston	54	
Mary	San Fransisco	35	
Paul	New York	23	
Adam	Seattle	84	
Hilde	Boston	19	
Bob	Chicago	76	
Sam	Portland	32	
Angela	Los Angeles	62	

Graphs

i

Relations, graphs, and tensors share a lot of structure but are specialized for different purposes

Relations

Names	City	Age	
Peter	Boston	54	
Mary	San Fransisco	35	
Paul	New York	23	
Adam	Seattle	84	
Hilde	Boston	19	
Bob	Chicago	76	
Sam	Portland	32	
Angela	Los Angeles	62	

Combine data to form systems

Graphs

Local operations on systems

Tensors

Global operations on systems

Pagerank

Triangle Counting

Solves

Dijkstra's Algorithm

Tensor

Graphs

Triangle counting on graphs, relations, and tensors

On relations

 $\frac{1}{6}$ trace(A^3).

Some important developments in compilers and programming languages for sparse compilers

- 1960s: Development of libraries for sparse linear algebra
- 1970s: Relational algebra and the first relational database management systems: System R and INGRES
- 1980s: SQL is developed and has commercial success
- 1990s: Matlab gets sparse matrices and some dense to sparse linear algebra compilers are developed
- 2000s: Sparse linear algebra libraries for supercomputers and GPUs
- 2010s: Graph processing libraries become popular, compilers for databases, and compilers for sparse tensor algebra

Parallelism, locality, work efficiency still matters, but the key is choosing efficient data structures

Harry	CS	
Sally	EE	
George	CS	
Mary	ME	
Rita	CS	

Harry	Sally	Ge
CS	EE	C

Sparse data structures in graphs, tensors, and relations encode coordinates in a sparse iteration space

Values may be attached to these coordinates: e.g., nonzero values, edge attributes

Hierarchically compressed data structures (tries) reduce the number of values that need to be stored

С	D	Ε				F
5	6	7	8	9	10	

Iteration over sparse iteration spaces imply coiteration over sparse data structures

Linear Algebra: A = B + CTensor Index Notation: $A_{ij} = B_{ij} + C_{ij}$ Iteration Space: $B_{ij} \cup C_{ij}$

Merged coiteration

Coordinate Space

Merged coiteration code

Intersection $b \cap c$

Union $b \cup c$

```
int pb = b_pos[0];
int pc = c_pos[0];
while (pb < b_pos[1] & pc < c_pos[1]) {
  int ib = b_crd[pb];
  int ic = c_crd[pc];
  int i = min(ib, ic);
  if (ib == i && ic == i) {
    a[i] = b[pb] + c[pc];
  }
  else if (ib == i) {
    a[i] = b[pb];
  }
  else {
    a[i] = c[pc];
  }
  if (ib == i) pb++;
  if (ic == i) pc++;
                                    b
}
while (pb < b_pos[1]) {</pre>
  int i = b_crd[pb];
  a[i] = b[pb++];
}
while (pc < c_pos[1]) {</pre>
  int i = c_crd[pc];
  a[i] = c[pc++];
}
```


С

Iterate-and-locate examples (intersection)


```
a = \sum_{i} b_{i}c_{i}
```

```
for (int pb = b_pos[0]; pb < b_pos[1]; pb ++) {
    int i = b_crd[pb];
    a += b[pb] * c[i];
}</pre>
```


Separation of Algorithm, Data Representation, and Schedule

