Lecture 6 - Sparse Programming Systems

Stanford CS343D (Winter 2024)
Fred Kjolstad

Terminology: Regular and Irregular

Fully Connected System

Regular System

Irregular System

Three classes of irregular systems

Road Networks
Fractional Sparsity

Power Law Graphs

How sparse is graph/relational data? Often asymptotically sparse.

Conditioned Meshes

Power-law graphs

Assume an average degree of 150 (e.g., 150 friends)
Each matrix row then has 150 nonzeros

$$
\text { At } 10,000 \text { rows: } \frac{150 \cdot 10,000}{10,000^{2}}=1.5 \% \text { nonzeros }
$$

$$
\text { At 100,000 rows: } \frac{150 \cdot 100,000}{100,000^{2}}=0.15 \% \text { nonzeros }
$$

Matrix components: $O\left(n^{2}\right)$ Nonzeros: $O(n)$
Fraction of nonzeros: $O(1 / n)$

Terminology: Dense and Sparse

Dense loop iteration space


```
for (int i = 0; i < m; i++) {
    for (int j = 0; j < n; j++) { \(y[i]+=A[i * n+j] * x[j]\);
    }
}
```

Sparse loop iteration space


```
for (int i = 0; i < m; i++) {
    for (int pA = A2_pos[i]; pA < A_pos[i+1]; pA++) {
        int j = A_crd[pA]
        y[i] += A[pA] * x[j];
    }
}
```

$$
y=A x
$$

$$
y=A x
$$

Three sparse applications areas

Relations, graphs, and tensors share a lot of structure but are specialized for different purposes

Triangle counting on graphs, relations, and tensors

On graphs

On relations
On tensors
$\frac{1}{6} \operatorname{trace}\left(A^{3}\right)$.

Some important developments in compilers and programming languages for sparse compilers

- 1960s: Development of libraries for sparse linear algebra
- 1970s: Relational algebra and the first relational database management systems: System R and INGRES
- 1980s: SQL is developed and has commercial success
- 1990s: Matlab gets sparse matrices and some dense to sparse linear algebra compilers are developed
- 2000s: Sparse linear algebra libraries for supercomputers and GPUs
- 2010s: Graph processing libraries become popular, compilers for databases, and compilers for sparse tensor algebra

Parallelism, locality, work efficiency still matters, but the key is choosing efficient data structures

Harry	CS
Sally	EE
George	CS
Mary	ME
Rita	CS

Harry	Sally	George	Mary	Rita
CS	EE	CS	ME	CS

Sparse data structures in graphs, tensors, and relations encode coordinates in a sparse iteration space
Tensor (nonzeros)
$(0,1)$
$(2,3) \quad(0,5)$
$(5,5) \quad(7,5)$

Relation (rows)	Graph (edges)
(Harry,CS) (Sally,EE)	$\left(\mathrm{v}_{1}, \mathrm{~V}_{5}\right) \quad\left(\mathrm{v}_{4}, \mathrm{~V}_{3}\right)$
(George,CS)	$\left(\mathrm{V}_{5}, \mathrm{~V}_{3}\right)$
(Rita,CS) (Mary,ME)	$\left(\mathrm{v}_{3}, \mathrm{v}_{5}\right) \quad\left(\mathrm{v}_{3}, \mathrm{v}_{1}\right)$

Values may be attached to these coordinates: e.g., nonzero values, edge attributes

Hierarchically compressed data structures (tries) reduce the number of values that need to be stored

Iteration over sparse iteration spaces imply coiteration over sparse data structures

Linear Algebra: $A=B+C$
Tensor Index Notation: $A_{i j}=B_{i j}+C_{i j}$
Iteration Space: $B_{i j} \cup C_{i j}$

union because $x+0=x$

Merged coiteration

Coordinate Space

$$
a_{i}=b_{i} \epsilon_{i} c_{i}
$$

Merged coiteration code

Intersection $b \cap c$
}

```
```

```
int pb = b_pos[0];
```

```
int pb = b_pos[0];
int pc = c_pos[0];
int pc = c_pos[0];
while (pb < b_pos[1] && pc < c_pos[1]) {
while (pb < b_pos[1] && pc < c_pos[1]) {
    int ib = b_crd[pb];
    int ib = b_crd[pb];
    int ic = c_crd[pc];
    int ic = c_crd[pc];
    int i = min(ib, ic);
    int i = min(ib, ic);
    if (ib == i && ic == i) {
    if (ib == i && ic == i) {
        a[i] = b[pb] * c[pc];
        a[i] = b[pb] * c[pc];
    }
    }
    if (ib == i) pb++;
    if (ib == i) pb++;
    if (ic == i) pc++;
```

 if (ic == i) pc++;
    ```


\section*{Union \(b \cup c\)}
```

```
int pb = b_pos[0];
```

```
int pb = b_pos[0];
int pc = c_pos[0];
int pc = c_pos[0];
while (pb < b_pos[1] && pc < c_pos[1]) {
while (pb < b_pos[1] && pc < c_pos[1]) {
    int ib = b_crd[pb];
    int ib = b_crd[pb];
    int ic = c_crd[pc];
    int ic = c_crd[pc];
    int i = min(ib, ic);
    int i = min(ib, ic);
    if (ib == i && ic == i) {
    if (ib == i && ic == i) {
        a[i] = b[pb] + c[pc];
        a[i] = b[pb] + c[pc];
    }
    }
    else if (ib == i) {
    else if (ib == i) {
        a[i] = b[pb];
        a[i] = b[pb];
    }
    }
    else {
    else {
        a[i] = c[pc];
        a[i] = c[pc];
    }
    }
    if (ib == i) pb++;
    if (ib == i) pb++;
    if (ic == i) pc++;
    if (ic == i) pc++;
}
}
while (pb < b_pos[1]) {
while (pb < b_pos[1]) {
    int i = b_crd[pb];
    int i = b_crd[pb];
    a[i] = b[pb++];
    a[i] = b[pb++];
}
}
while (pc < c_pos[1]) {
while (pc < c_pos[1]) {
    int i = c_crd[pc];
    int i = c_crd[pc];
    a[i] = c[pc++];
    a[i] = c[pc++];
}
```

}

```
```

 b
    ```
```

 b
    ```
c

\section*{Iterate-and-locate examples (intersection)}
\[
a=\sum_{i} b_{i} c_{i}
\]

```

for (int pb = b_pos[0]; pb < b_pos[1]; pb ++) {
int i = b_crd[pb];
a += b[pb] * c[i];
}

```

\section*{Separation of Algorithm, Data Representation, and Schedule}
```

