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We show how to build a compiler for a sparse array language that supports shape operators (e.g. reshaping or

concatenating arrays) in addition to compute operators. Existing sparse array programming systems implement

generic shape operators for only some sparse data structures, reduce shape operators on other data structures to

those, and do not support fusion. Our system compiles sparse array expressions to code that efficiently iterates

over reshaped views of irregular sparse data structures, without needing to materialize temporary storage for

intermediates. Our evaluation shows that our approach generates sparse array code competitive with popular

sparse array libraries: shape operators perform on average 1.49× (0.408×–4.31×) better than hand-written

kernels in scipy.sparse and 28× (0.476×–274×) better than generic implementations in pydata/sparse. For
operators that require data structure conversions in these libraries, our generated code performs on average

4.19× (1.99×–8.36×) better than scipy.sparse and 54.6× (10.8×–259×) better than pydata/sparse. Finally,
our evaluation also shows that fusing shape and compute operators improves the performance of several

expressions (1.16×–2.79×).

1 INTRODUCTION
Shape operators are the type casts of array programming. The shape of an array is a key component

of its type, and determines which operations on it are valid: vectors of different lengths cannot

be added and matrices of incompatible dimensions cannot be multiplied. However, programmers

often need to manipulate the shape of arrays, and do so via shape operators. Many important

computations require explicitly manipulating array shapes, such as stacking constraint matrices in

physical simulation [Solomon 2015], reshaping tensors in neural networks [Vaswani et al. 2017],

and slicing images in biomedical computing [Boyse and Seidl 1996]:

𝑦 =


𝐴

𝐵

𝐶

 𝑥
Stacked matrix-vector multiply

𝑦 = 𝐴


𝑋0,0

.

.

.

𝑋𝑛−1,𝑚−1


Linear layer on a flattened matrix

𝑌 = 𝐴:,:,𝑖

2D slice of 3D MRI data

As a result, dense array programming systems [Harris et al. 2020; Iverson 1962; Paszke et al. 2019]

have ample support for such operators, and they often reduce to constant-time metadata edits.

Sparse array programming systems lag behind their dense counterparts, with incomplete support

for shape operators. While sparse array libraries [Abbasi 2018; Virtanen et al. 2020] support some

shape operators, the implementations reduce to a small set of hand-written kernels. The conversions

to intermediate data structures required by these reductions incur a significant performance cost.

Sparse compilers [Ahrens et al. 2023; Kjolstad et al. 2017; Ye et al. 2023; Zhao et al. 2022] lack a

complete set of shape operators.

Compiler support for shape operators is necessary for performant sparse array systems. It

is not enough to simply hand-engineer a library of sparse shape operators, nor is it feasible to
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Table 1. Comparison of sparse shape operation support across several programming systems. Yellow circles

indicate partial support: scipy.sparse and pydata/sparse have limited sparse data format support. taco

and Looplets support fusing compute operators, but not shape operators.

Programming Model Compilation

Data Representation Shape Operators

Dense Sparse Any dims Slicing Concatenation Reshape Fusion

numpy ✘ ✔ ✘ ✔ ✔ ✔ ✔ ✘
scipy.sparse ✘ ✔ ● ✘ ✔ ✔ ✔ ✘
pydata/sparse ✘ ✔ ● ✔ ✔ ✔ ✔ ✘
taco ✔ ✔ ✔ ✔ ✔ ✘ ✘ ●
Looplets ✔ ✔ ✔ ✔ ✘ ✔ ✘ ●
burrito (This Work) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

implement the full Cartesian product of operations and sparse array data structures. Prior work on

sparse compute operators (e.g. matrix multiplication) shows that compiler support is necessary

for performance and programmer productivity, due to the scaling issues introduced with the large

number of sparse data structures [Ahrens et al. 2023; Chou et al. 2018]. Compiler support for sparse

shape operators enables generating fused code that is specialized to the data structures of the

operands and the result. The key challenge in compiling sparse shape operators lies in generating

code that iterates over, and computes on, combinations of reshaped, concatenated, and sliced views

of irregular data structures representing sparse arrays.

While recent work on compilers for sparse tensor algebra [Ahrens et al. 2023; Bik et al. 2022;

Kjolstad et al. 2017] addresses the sparse compute problem, they offer limited support for shape

operators: taco supports slicing unfused array operands [Henry et al. 2021] and Looplets [Ahrens

et al. 2023] supports concatenation without fusion. These systems offer no unified representation

of shape operators, and no compiler that we are aware of supports sparse reshape operations.

Libraries such as scipy.sparse [Virtanen et al. 2020] and pydata/sparse [Abbasi 2018] are not
feature complete, and are limited by the time required for the maintainers to implement different

combinations of shape operators and sparse array data structures. Libraries also naturally do not

support operator fusion.

We introduce a compiler-based approach for representing shape operators, building on ideas

from taco to support iterating over reshaped arrays. We implement these ideas in a prototype

compiler named burrito
1
. We extend an existing array programming language to support shape

operators (Section 3), describe compilation to a new intermediate representation (IR) for iterating

over sparse data structures (Section 4), and outline the compilation process from our IR to efficient

CPU code (Section 5 and Section 6). Our abstractions enable generation of specialized code for

sparse array kernels containing shape operators, can generate code for a variety of data structures,

and enable fusion across shape and compute operators. Table 1 summarizes how burrito compares

to other array programming systems. Our technical contributions are:

(1) A lowering approach from an array language with shape operators (Section 3) to a high-level

loop language that expresses fusion across operators (Section 4).

(2) A state-driven algorithm for generating optimized while loops that coiterate through re-

shaped iteration spaces (Section 5).

(3) A compilation approach for generating iteration code that abstracts both data structures

and reshaped iteration spaces, based on a simple iterator model (Section 6).

burrito generates code competitive with hand-written libraries on unfused shape operators, and

generally out-performs these libraries when given sparse kernels that offer fusion opportunities.

1
A burrito is what you get when you reshape a taco.
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Concrete Index Notation

Sequence Expressions
(Section 4)

Abstract Control-Flow IR
(Section 5)

Coiteration Optimization
(Section 5)

Array Language
(Section 3)

Scheduling Language

Format Language

C language

format
properties

Data Structure Concretization 
(Section 6)

Fig. 2. The burrito compilation approach compiles an array language to C code in three steps through two

loop-based intermediate representations over logical arrays. Section references mark our contributions.

Across five shape operators hand-written in scipy.sparse and pydata/sparse, burrito per-

forms 1.11×–4.31× and 10.4×–274× (respectively) faster. A sixth shape operator performs 0.408×
and 0.476× slower respectively due to vectorization, which burrito does not currently support.

For shape operators whose library implementations convert between data structures, burrito-

generated code out-performs scipy.sparse by 1.9×–8.36× and pydata/sparse by 6.29×–287×.
To evaluate the benefits of fusion, we perform a self-comparison and show that code that fuses

shape and compute operators out-performs unfused code by 1.16×–2.79× on some benchmarks.

2 OVERVIEW
The compilation approach we describe in this paper compiles an array language to C code. The

array language is tensor index notation extended with shape operators, and operates on logical
arrays that abstract away the details of the physical data structures. burrito separately accepts a

format language that describes the sparse or dense physical data structures that implement the

logical arrays, following prior work on separating algorithm from data structure [Chou et al. 2018;

Kjolstad et al. 2017]. Finally, a separate scheduling language [Kjolstad et al. 2019] lets users or

automated systems describe loop reordering and introduce temporaries.

Figure 2 shows an overview of our compilation approach, which we implement in the burrito

compiler. Compilation consists of three lowering steps through two intermediate representations

(IRs). The first step lowers the array language to nested forall loops over logical arrays. Scheduling

directives (e.g. loop reordering) apply to this IR. Each loop iterates over an expression that describes

the loop’s iteration domain as an ordered set expression (sequence expression) over the coordinates

of array dimensions. Prior work expresses compute operators as intersections and unions [Kjolstad

et al. 2017] and further work adds complements and slicing [Henry et al. 2021]. In order to support

the complete set of shape operators, our work adds three new set expression operators: set product,

set projection, and disjoint union.

(intersection + union)
[Kjolstad et al. 2017]

+ (complement + slicing)
[Henry et al. 2021]

+ (product + projection + disjoint union)
[this work]

The forall loops are then lowered to an IR that expresses more complex control-flow. Each forall

is turned into a sequence of while loops over sequence expressions that iterate over progressively

simplified loop bodies as sparse arrays run out of non-zero coordinates. This lowering step requires

knowledge of format properties to determine which arrays to iterate over and which arrays to

randomly access into. The final step lowers the while loops to C code where logical arrays are

replaced by the physical data structures described via the format language.

3 SHAPE OPERATORS
burrito compiles a language that extends tensor index notation for tensor algebra to support

shape operators. Tensor index notation is a declarative language for describing tensor algebra.
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kernel F array(I) = expr

expr F array(I) | expr + expr | expr * expr | sum(idx, expr) | broadcast(idx, expr) |

collapse(expr, (idx, idx) � idx) | concat((expr, expr), (idx, idx) � idx) |

split(expr, idx � (idx, idx)) | slice(expr, idx � idx, (int, int, int))

Fig. 3. Our front-end language for expressing array algebra, which supports tensor index notation (element-

wise addition and multiplication, summation along an axis, and broadcasting), as well as our additional shape

operators. Indices (idx) label array dimensions.

An example is matrix multiplication, 𝐴𝑖 𝑗 =
∑

𝑘 𝐵𝑖𝑘𝐶𝑘 𝑗 , where each component of 𝐴𝑖 𝑗 is the inner

product of a row of B and a column of C. Shape operators are common in libraries like numpy and

PyTorch and let users change the shape of a tensor in various ways. For example, a user can reshape

(flatten) a matrix into a vector with the same number of elements or concatenate two matrices with

the same number of rows into a matrix that contains columns from each of the two operands.

Figure 3 provides the syntax of the algorithm language supported by burrito. We first provide a

high-level semantics for the shape operators by defining how each operator maps a coordinate in

the logical input array(s) to a coordinate in the constructed logical array, and then provide a shape

inference algorithm for detecting the validity of an array program via typing rules.

3.1 Operator Definitions
The shape of a logical 𝑛-dimensional logical array represents an 𝑛-dimensional hyper-rectangle,

where each dimension has a size. Tensor index notation labels each dimension via index variables.
Shape operators are used to explicitly manipulate the shapes of arrays by combining and construct-

ing index variables, and thereby the corresponding dimensions. We define each shape operator

with respect to the coordinate mapping it induces from one or more input arrays to the constructed

array. Note that each of our operators are given as binary operators (i.e. binary concatenation), as

burrito supports fusion by default.

Collapse. The collapse operator flattens two dimensions into one, constructing a new index with a

size equal to the product of the size of the flattened dimensions. The shapes of the input and the

output contain the same number of discrete points, but the output shape has one fewer dimensions

than the input shape. The ordering of the flattened index variables (the second argument to collapse)

controls the coordinate space mapping: the ordering of coordinates in the constructed dimension is

equivalent to the the lexicographic ordering of the flattened dimensions. For example, a matrix B
with rows labeled i and columns labeled j can be row-major collapsed via a(k) = collapse(B(i, j),

(i, j) � k), or column-major collapsed via a(k) = collapse(B(i, j), (j, i) � k). The coordinate

remapping follows the standard strided offset formula.

Concatenate. The concat operator is used to stack two arrays along a dimension. The shape of the out-

put has the same number of discrete points as the sum of the points of the shapes of the inputs, and

the same number of dimensions. The ordering of arrays control the coordinate space mapping: each

coordinate in the first input array exists in the same location in the output array, and each coordinate

in the second is offset in the dimension being concatenated. For example, a program that horizon-

tally concatenates two arrays can be expressed as: A(i, l) = concat((B(i, j), C(i, k)), (j, k) � l).

A contains every coordinate B contains, as well as every coordinate that C contains, with the second

coordinate of each element offset by the size of the dimension labeled by j.

Split. The split operator is the inverse of collapse, as it divides one source dimension into two

constructed dimensions
2
. The source dimension has a size equal to the product of the sizes of

2split and collapse are building blocks that can be used to support the reshape operation.
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the constructed dimensions. The input and output shapes contain the same number of discrete

points, but the output shape has one more dimension than the input shape. The ordering of the

pair of constructed indices controls the coordinate space mapping: the lexicographic ordering of

the constructed dimensions is equivalent to the ordering of the source dimension. For example,

consider splitting a 1D array into 2D: A(i, j) = split(b(k), k � (i, j)). For this row-wise splitting,

the coordinate 1 in b corresponds to (0, 1) in A. For a column-wise splitting: A(i, j) = split(b(k), k

� (j, i)), the coordinate 1 in b corresponds to (1, 0) in A. This coordinate remapping is defined by

the inverse of the strided offset formula for collapse.

Slice. The slice operator extracts a uniform (possibly strided) subsequence from a dimension via

values for the start, end, and stride. The shape of the input contains more discrete points
3
but

has the same number of dimensions as the output shape. A coordinate in the sliced dimension is

discarded if: 1) it is less than the start value; 2) greater than or equal to the end value; or 3) not a

whole-number multiple of the stride value from the start index. If a coordinate passes these filters,

i.e. a coordinate 𝑐 in the input dimension is sliced with a start index of 𝑠 and a stride of 𝑟 meets

the constraint: 𝑐 = 𝑠 + 𝑥 · 𝑟 for 𝑥 ∈ N and 𝑐 < 𝑒 , then it maps to the coordinate 𝑥 in the output

dimension. For example, if a user wished to select the even-indexed values of a vector, they could

write the kernel a(i) = slice(b(j), j � i, (0, J, 2)), or if they wanted the first half of an array,

a(i) = slice(b(j), j � i, (0, J/2, 1)). Note that Henry et al. [2021] introduced slicing on sparse

array operands only, while burrito supports slicing intermediate computations, i.e. slicing the

result of a multiplication, or a reshaped array.

3.2 Shape Inference
The shape of an expression in array algebra is an essential component of the type4, and an array

compiler requires a shape inference algorithm for checking the validity of programs. For tensor

index notation, shapes are easy to infer; element-wise operations produce an output with the

same shape as the inputs and reductions remove a dimension from the shape of the operand.

Broadcasting, though implicit in tensor index notation, is technically a shape operator, as it inserts

a new dimension into the logical shape of an array. For the new shape operators defined in the

prior section, new dimensions are constructed that a compiler must reason about in order to check

program correctness.

As described previously, the shape of an array describes the number of dimensions and the

size of each dimension. We denote shape as 𝑆 , an unordered set of indices, each of which labels a

dimension with a name and size. The set cardinality operator |𝑖 | is used to represent the size of the

dimension indexed by 𝑖 .

The full inference algorithm is provided in Figure 4, but as an illustrative example, the inference

rule for collapse is:
a : 𝑆 i ∈ 𝑆 j ∈ 𝑆 k ∉ 𝑆 |i| · |j| = |k|
collapse(a, (i, j) � k) : (𝑆 − {i, j}) ∪ {k}

The first two constraints, i ∈ 𝑆 and j ∈ 𝑆 , require that the source indices that are being collapsed,

i and j, are contained within the shape, 𝑆 , of the array operand, a. Next, k ∉ 𝑆 requires that the

constructed index, k, is not already in 𝑆, which is necessary for the uniqueness of indices in the

output shape. The last constraint, |i| · |j| = |k|, requires that the size of the dimension of the

constructed index, |k|, is the product of the size of dimensions represented by the source indices, |i|
and |j|. This means that the output array of the collapse has the same number of discrete elements

3
Assuming the slice is non-trivial: a trivial slice removes no elements, i.e. slicing 𝑖 with a start of 0, an end of the size of 𝑖 ,

and a stride of 1.

4
The type of an array consists of the shape and the type of the scalar elements.
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a(𝐼 ) : 𝐼
a : 𝑆 i ∈ 𝑆 j ∈ 𝑆 k ∉ 𝑆 |i| · |j| = |k|
collapse(a, (i, j) � k) : (𝑆 − {i, j}) ∪ {k}

a : 𝑆 i ∉ 𝑆

broadcast(i, a) : 𝑆 ∪ {i}
a : 𝑆𝑎 b : 𝑆𝑏 𝑆𝑎 − {i} = 𝑆𝑏 − {j} k ∉ 𝑆𝑎 |i| + |j| = |k|

concat((a, b), (i, j) � k) : (𝑆𝑎 − {i}) ∪ {k}
a : 𝑆𝑎 b : 𝑆𝑏 𝑆𝑎 = 𝑆𝑏

a <op> b : 𝑆𝑏

a : 𝑆 i ∈ 𝑆 j ∉ 𝑆 k ∉ 𝑆 |i| = |j| · |k|
split(a, i � (j, k)) : (𝑆 − {i}) ∪ {j, k}

a : 𝑆 i ∈ 𝑆

sum(i, a) : 𝑆 − {i}
a : 𝑆 i ∈ 𝑆 j ∉ 𝑆

𝑒−𝑠+(𝑟−1)
𝑟

= |j|
slice(a, i � j, (s, e, r)) : (𝑆 − {i}) ∪ {j}

Fig. 4. Shape inference rules and validity constraints for shape and compute operators. An array’s shape

is the set of indices that index it (note that the indices used to read an array are ordered, but the shape is
unordered). Broadcasting inserts a new index into the shape. Element-wise operations produce an expression

with the same shape as the inputs. Summation removes the reduced index from the shape. Collapsing

flattens two indices into a single constructed index, while splitting divides a single source index into two

constructed indices. Concatenation accepts a pair of expressions and pair of indices, concatenating the

two expressions along the two indices to produce a single constructed index. Concatenation requires that

the non-concatenated indices of each operand must match. Slicing re-labels a source index into a smaller

constructed index.

in space as the array being collapsed. The output array has a shape where dimensions other than i

and j are unchanged, and i and j are replaced by k.

Consider the program c(k) = a(k) * collapse(B(i, j), (i, j) � k), the element-wise multiplica-

tion of a vector with a flattened matrix. This program is well-typed: the shape of the argument

to collapse is 𝑆B(i, j) = {i, j}, and i ∈ 𝑆B(i, j) and j ∈ 𝑆B(i, j) are trivially true. Likewise, the

constructed index is not in the source shape, k ∉ 𝑆B(i, j). Lastly, the dimensionality constraint is

satisfied if |i| · |j| = |k|. Stepping up a level, both operands to the multiplication have a shape of {k},
so the multiplication is well-typed.

4 SEQUENCE EXPRESSIONS
The first compilation pass generates forall loops over logical arrays from the operators described in

the previous section. The IR for representing forall loop extends taco’s concrete index notation

(CIN) [Kjolstad et al. 2019] with a more advanced language for describing the iteration spaces of

loops, termed sequence expressions. CIN is a language of loops over logical arrays that supports loop

transformations such as loop reordering and the allocation of temporaries. These transformations

are essential for avoiding inefficient discordant traversals, which iterate over a data structure in an

order for which it was not designed [Bik et al. 1994; Gustavson 1972]. Collapsing a CSR matrix in

column-row order or concatenating a CSRmatrix with a CSCmatrix are both examples of discordant

traversals. It is generally more efficient to transpose an operand into a temporary matrix, and iterate

over the temporary in concordant order in these cases, as discordant traversals require a dense loop

with sparse look-ups. This section focuses on our novel contribution, sequence expressions, and

we refer the reader to prior work for further discussion of CIN, loop transformations, and avoiding

discordant traversals [Kjolstad et al. 2019].

Sequence expressions are closely related to the coordinate mappings described in Section 3.1, and

can express both compute and shape operators. For example, addition corresponds to the union of

sequences and collapse corresponds to the Cartesian product of sequences, where the coordinates

in the resulted tuples are combined using a strided offset formula. Each shape operator corresponds

to an operation on the sequences of non-zeros of its operands, and these operations fundamentally
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(a) Row-major 2D array. (b) Collapsed 2D array. (c) Horizontally stacked arrays.

(d) 1D array. (e) Split 1D array. (f) Sliced 1D array.

Fig. 5. Various space filling curves.

change the iteration spaces of the loops. We provide semantics for sequence combinators and a

construction algorithm for generating sequence expressions from the expression language described

in Section 3.1.

4.1 Sequence Combinator Semantics
We provide the full grammar for CIN below, but this section focuses on our novel contribution: the

grammar for sequence expressions, seq.

stmt F forall idx ∈ seq stmt | stmt; stmt | stmt where stmt | a(I) = expr | a(I) += expr

seq F idx a | seq ∪ seq | seq ∩ seq | seq × seq | seq ⊔ seq | 𝜋𝑘 ( seq, (int, int) ) | seq[int:int:int]

Each sequence operator operates on a sequence of coordinates in a dimension of one or more arrays.

Sequence operators corresponding to shape operators perform coordinate space transformations

on their operand sequences. The semantics of these operators are important both for understanding

how shape operators combine iteration spaces, and for compiling down to loops over irregular

data structures. These operators are used to generate a sequence expression that represents the set

of non-zero coordinates of the output array of a computation, for each dimension of the output

array. Intuitively, each operator corresponds to an operation that changes the space filling curve of

a hyperrectangle, and we provide examples in Figure 5. The semantics of these operators are as

follows:

product: 𝐴 × 𝐵 is isomorphic to the Cartesian product, but applies a strided offset formula to the

produced tuples to generate a whole number coordinate value. Intuitively, product corresponds to:

for each element in 𝐴, step through each element in 𝐵. Figure 5b depicts the product space-filling

curve of a collapsed matrix. Formally, product is expressed as

𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 ⇐⇒ (𝑎 · |𝐵 | + 𝑏) ∈ 𝐴 × 𝐵

concatenation: 𝐴 ⊔ 𝐵 is isomorphic to a disjunctive union, but produces a sequence with a

range that is the sum of the input sequence ranges. Intuitively, this operator corresponds to first

stepping through each element in 𝐴 and then through each element in 𝐵. Figure 5c depicts the

space filling curves of horizontally concatenated matrices. Formally

𝑎 ∈ 𝐴 ⇐⇒ 𝑎 ∈ 𝐴 ⊔ 𝐵 𝑏 ∈ 𝐵 ⇐⇒ (𝑏 + |𝐴|) ∈ 𝐴 ⊔ 𝐵

projection: 𝜋𝑘 (𝐴, (𝐼 , 𝐽 )) is isomorphic to the set projection operation, but first applies the inverse

of the strided offset formula to elements of 𝐴 to produce a tuple from a single coordinate, with

the shape (𝐼 , 𝐽 ). The projection index, 𝑘 , selects the 𝑘th element from the produced tuple. Because

burrito’s front-end allows users to express binary splitting, sequence expressions only need to

support two-way projections, which can be chained if a dimension needs to be split more than once.

Intuitively, a projection of a sequence produces two sequences that each iterate over sub-spaces

of the original sequence. The first sequence 𝜋0 (𝐴, (𝐼 , 𝐽 )) is a sequence of size 𝐼 , and the second,

𝜋1 (𝐴, (𝐼 , 𝐽 )) is a sequence of size 𝐽 . Projection is the inverse to product, just as collapsing and
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a(i) = b(i) * c(i) A(i, j) = split(b(k), k � (i, j)) c(k) = collapse(A(i, j), (i, j) � k) + b(k)

↓ ↓ ↓

forall 𝑖 ∈ 𝑖𝑏 ∩ 𝑖𝑐
𝑎 (𝑖 ) = 𝑏 (𝑖 ) ∗ 𝑐 (𝑖 )

forall 𝑖 ∈ 𝜋0 (𝑘𝑏 , [𝐼 , 𝐽 ] )
forall 𝑗 ∈ 𝜋1 (𝑘𝑏 , [𝐼 , 𝐽 ] )

𝐴(𝑖, 𝑗 ) = 𝑏 (𝑘 )

forall 𝑘 ∈ (𝑖𝐴 × 𝑗𝐴 ) ∪ 𝑘𝑏
𝑐 (𝑘 ) = 𝐴(𝑖, 𝑗 ) + 𝑏 (𝑘 )

Fig. 6. CIN for various kernels.

splitting are inverses. Figure 5e depicts the space filling curves produced by splitting a vector into

two dimensions. Formally

𝑎 ∈ 𝐴 ⇐⇒ 𝑎

𝐽
∈ 𝜋0 (𝐴, (𝐼 , 𝐽 )) and (𝑎%𝐽 ) ∈ 𝜋1 (𝐴, (𝐼 , 𝐽 )) .

slice: 𝐴[𝑠:𝑒:𝑟 ] is a simple filtering operation. Intuitively, slicing removes all elements from a

sequence that are not a stride of 𝑟 away from the start 𝑠 , and any elements greater than 𝑒 . Figure 5f

depicts the space filling curve produced by slicing the 3rd through the 5th elements of a length 6

vector. Formally

𝑎 ∈ 𝐴 and 𝑠 ≤ 𝑎 ≤ 𝑒 and ∃𝑥 ∈ N, 𝑎 = 𝑠 + 𝑟 · 𝑥 ⇐⇒ 𝑥 ∈ 𝐴[𝑠 :𝑒 :𝑟 ].

4.2 Sequence Combinator Construction
burrito’s construction of sequence expressions from an array expression is defined by the function

Υ(e, i). Υ accepts an expression, e, from the grammar defined in Figure 3, and an index variable,

i, and generates a sequence expression that represents the output coordinates in the ith dimension

of e. The full definition of Υ is given in Figure 7, and we provide an example for intuition.

Consider the compilation of the rightmost kernel in Figure 6, which generates a single loop over

the output index, k. In order to derive the sequence expression that corresponds to k’s iteration

space, the recursive construction algorithm applies the following rules from Figure 7:

Υ (a + b, i) = Υ (a, 𝑖 ) ∪ Υ (b, i) Υ (collapse(a, (j, k) � l), i) =

{
Υ (a, 𝑗 ) × Υ (a, 𝑘 ) 𝑖 = 𝑙

Υ (a, 𝑖 ) 𝑖 ≠ 𝑗

These rules construct the sequence (𝑖𝐴 × 𝑗𝐴) ∪𝑘𝑏 , the loop bounds in the rightmost loop of Figure 6.

This sequence expression means that the output sequence of non-zeros is equivalent to the flattened

sequence of a’s non-zeros unioned with the sequence of b’s non-zeros. This exactly represents the

set of non-zeros in the output array.

Υ (t(I), i) =

{
𝑖𝑡 𝑖 ∈ 𝐼

∅ 𝑖 ∉ 𝐼
Υ (collapse(a, (j, k) � l), i) =

{
Υ (a, 𝑗 ) × Υ (a, 𝑘 ) 𝑖 = 𝑙

Υ (a, 𝑖 ) 𝑖 ≠ 𝑗

Υ (a + b, i) = Υ (a, 𝑖 ) ∪ Υ(b, i) Υ (concat((a, b), (j, k) � l), i) =

{
Υ (a, 𝑗 ) ⊔ Υ (b, 𝑘 ) 𝑖 = 𝑙

Υ (a, 𝑖 ) ∪ Υ (b, 𝑖 ) 𝑖 ≠ 𝑙

Υ (a * b, i) = Υ (a, 𝑖 ) ∩ Υ(b, i) Υ(split(a, j � (k, l)), i) =


𝜋0 (Υ(a, 𝑗 ), ( |𝑘 |, |𝑙 | ) ) 𝑖 = 𝑘

𝜋1 (Υ(a, 𝑗 ), ( |𝑘 |, |𝑙 | ) ) 𝑖 = 𝑙

Υ (a, 𝑖 )

Υ (bc(j, a), i) =

{
U𝑖 𝑖 = 𝑗

Υ(a, 𝑖 ) 𝑖 ≠ 𝑗
Υ(slice(a, j � k, R), i) =

{
Υ (a, j)[R] 𝑖 = 𝑘

Υ (a, i) 𝑖 ≠ 𝑘

Fig. 7. Υ maps an array algebra expression and an index to a sequence expression, which represents the

non-zero elements being iterated over. For slice, R corresponds to the slice parameters (start, end, and

stride). Reductions (sum) are not handled here because lowering rewrites reductions into loops with reduction

temporaries when constructing forall loops.
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5 COMPILING TO COITERATING LOOPS
We introduce a second intermediate representation that contains more complex control-flow

constructs than CIN’s forall loops: CFIR (Control Flow Intermediate Representation). To generate

code that efficiently iterates over a sequence expression, burrito must reason about when a sparse

sequence runs out of elements (i.e. when an array runs out of values), or does not contain a particular

coordinate. CFIR allows burrito to represent these optimizations while still abstracting away the

concrete details of the underlying physical data structures. We first define CFIR before showing how

to construct it via a generalized form of iteration lattices [Henry et al. 2021; Kjolstad et al. 2017].

Iteration lattice construction reasons about format properties to determine which sequences should

be iterated over, and which can be randomly-accessed into, but lattices and CFIR still abstract away

details of the physical data structures underlying the logical arrays.

5.1 Control Flow Intermediate Representation
We provide the full grammar for CFIR below, whose key components are loops and conditional

execution (switch statements).

cfir F while idx � seq (with (seq = seq)*)?) cfir | switch idx (case seq: cfir)+ |

cfir; cfir | a(I) = expr | a(I) += expr

5.1.1 Loops. The while loops of CFIR iterate over a sequence expression until an operand runs

out of elements. This construct is useful because a sequence expression and a loop body can be

simplified if any sub-sequence is empty, and that simplification produces simpler and more efficient

code. Therefore, if a sub-sequence becomes empty, control flow should transition to a loop over a

simpler sequence expression with a simpler loop body. For example, consider the example program

in Figure 8, which adds a flattened 2D array to a compressed 1D array. If the flattened matrix

runs out of non-zero values, then the program only needs to iterate over the compressed vector.

Likewise, if the compressed vector runs out of elements, the program only needs to iterate over

the flattened matrix. The single CIN loop in Figure 8d is compiled to three CFIR loops in Figure 8f,

where the latter two have simplified loop bodies.

CFIR loops also support locating into sequences that support random-access (via the with oper-

ation) in order to access array values. In certain circumstances, a sequence does not need to be

c(k) = collapse(A(i, j),(i,j)�k)
+ b(k)

(a) Array algorithm description.

forall 𝑘 ∈ (𝑖𝐴 × 𝑗𝐴 ) ∪ 𝑘𝑏
𝑐 (𝑘 ) = 𝐴(𝑖, 𝑗 ) + 𝑏 (𝑘 )

(d) Concrete index notation.

A: Dense , Compressed
b: Compressed
c: Dense

(b) Array format description.

= +

(c) Logical iteration pattern.

(𝑖𝐴 × 𝑗𝐴 ) ∪ 𝑘𝑏

𝑖𝐴 × 𝑗𝐴 𝑘𝑏

∅

𝑘𝑏 𝑖𝐴

𝑖𝐴 𝑘𝑏

(e) 𝑘’s iteration lattice.

1 while 𝑘 � (𝑖𝐴 × 𝑗𝐴 ) ∪ 𝑘𝑏

2 switch k

3 case (𝑖𝐴 × 𝑗𝐴 ) ∩ 𝑘𝑏 :

4 𝑐 (𝑘 ) = 𝐴(𝑖, 𝑗 ) + 𝑏 (𝑘 )
5 case (𝑖𝐴 × 𝑗𝐴 ):
6 𝑐 (𝑘 ) = 𝐴(𝑖, 𝑗 )
7 case 𝑘𝑏 :

8 𝑐 (𝑘 ) = 𝑏 (𝑘 )
9 while 𝑘 � 𝑖𝐴 × 𝑗𝐴

10 𝑐 (𝑘 ) = 𝐴(𝑖, 𝑗 )
11 while 𝑘 � 𝑘𝑏

12 𝑐 (𝑘 ) = 𝑏 (𝑘 )

(f) Control-flow IR.

Fig. 8. Compilation of the fused collapse-and-addition in (a) with the formats in (b) produces the CIN in (d),

visually represented by the space-filling curves in (c). Compilation of (d) generates the iteration lattice (e),

which constructs the coiterating loops in (f). For the final compiled C output, refer to Figure 19.
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C(i, j) = split(a(k), k�(i, j))
* B(i, j)

(a) Array algorithm description.

a: Compressed
B: Dense , Compressed
C: Dense , Dense

(b) Array format description.

forall 𝑖 ∈ 𝜋0 (𝑘𝑎, [𝐼 , 𝐽 ] ) ∩ 𝑖𝐵
forall 𝑗 ∈ 𝜋1 (𝑘𝑎, [𝐼 , 𝐽 ] ) ∩ 𝑗𝐵

𝐶 (𝑖, 𝑗 ) = 𝑎 (𝑘 ) ∗ 𝐵 (𝑖, 𝑗 )

(c) Concrete index notation

𝜋0 (𝑘𝑎, [𝐼 , 𝐽 ] ) ∩ 𝑖𝐵

∅

𝜋1 (𝑘𝑎, [𝐼 , 𝐽 ] ) ∩ 𝑗𝐵

∅

𝜋0 (𝑘𝑎 ) 𝑘𝑎, 𝑖𝐵 𝜋1 (𝑘𝑎 ) 𝑘𝑎, 𝑗𝐵

(d) Iteration lattices for 𝑖 and 𝑗 .

1 while 𝑖 � 𝜋0 (𝑘𝑎, [𝐼 , 𝐽 ] ) with 𝑖 = 𝑖𝐵

2 while 𝑗 � 𝜋1 (𝑘𝑎, [𝐼 , 𝐽 ] ) ∩ 𝑗𝐵

3 switch 𝑗

4 case 𝜋1 (𝑘𝑎, [𝐼 , 𝐽 ] ) ∩ 𝑗𝐵 :

5 𝐶 (𝑖, 𝑗 ) = 𝑎 (𝑘 ) ∗ 𝐵 (𝑖, 𝑗 )

(e) Control-flow IR.

Fig. 9. Multiplication of a split compressed vector and a CSR matrix exposes an opportunity for the iterate/lo-

cate optimization: the 𝑖 loop can iterate over the projection of the sparse vector’s sequence, and use 𝑖 to locate

into a row of the CSR matrix, possibly skipping some rows. The 𝑗 loop still coiterates the split sequence and

the compressed columns of the CSR matrix, as both sequences are sparse. Refer to Figure 20b for the final

generated C code from this example.

fully iterated. For example, if iterating over 𝑎 ∩ 𝑏, and 𝑎 ⊆ 𝑏, it is sufficient to iterate over only

𝑎, and randomly access into 𝑏 to get the value labeled by its coordinate. This is the iterate/locate

optimization described by Kjolstad et al. [2017], because iterating over a sparse sequence and

locating into a dense sequence is asymptotically optimal. burrito supports the same optimization,

using format properties to detect which sub-sequences support fast (𝑂 (1)) location. In general,

if a sequence is dense, or constructed from only dense sequences (i.e. the product of two dense

sequences), it can and should be located into. For an example, in Figure 9, the sparse sequence

𝜋0 (𝑘𝑎, [𝐼 , 𝐽 ]) can be used to locate into the dense rows of B. The final C code generated from

Figure 9 is in Figure 20b, with line 4 performing the locate.

5.1.2 Conditionals. When iterating over a sequence, some sub-sequences may not contain a

coordinate that other sub-sequences contain. Conditional execution is required to represent when

a loop body should execute a simplified computation based on which sub-sequences contain a

particular coordinate. In CFIR, this is handled by the switch construct, which redirects computation

based on the value of a coordinate. For example, consider the loops in Figure 12d. When the split

vector still has coordinates left, but does not contain a particular 𝑖 coordinate that the CSR matrix

does contain, the second loop only needs to iterate over the 𝑗 values of the CSR matrix. This is

reflected in lines 16–18 of Figure 12g.

5.2 Generalized Iteration Lattices
Iteration lattices [Henry et al. 2021; Kjolstad et al. 2017] are ordered state machines that enable

reasoning about multi-way merging of coordinate sets. We extend iteration lattices to represent

iteration over the sequence expressions defined in Section 4, provide a construction algorithm for

iteration lattices, and show how to use iteration lattices to compile a loop in CIN to CFIR loops and

conditionals.

An iteration lattice consists of ordered points. A point is labeled by a sequence expression,

and represents iterating over that sequence. Each point has child points that represent simplified

versions of the parent’s sequence expression. Edges to children are labeled by a sub-sequence whose

removal from the parent’s sequence expression produces the simplified sequence expression in the
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child point. Concretely, a point representing the sequence 𝑠 has an edge labeled 𝑒 to a child point

representing the sequence 𝑡 if removing 𝑒 from 𝑠 (replacing it with the empty set) and performing

simplification produces the sequence 𝑡 . This simplification is used to construct a lattice: we provide

our algorithm for lattice construction in Figure 10, which follows a recursive top-down approach

that produces progressively simpler sequence expressions to iterate over.

func ConstructLattice(seq):

point = LatticePoint(seq)

// Transition sub -sequences

// (Section 5.2.1 and Figure 11)

edges = 𝜒(seq)

for sub in edges:

// Simplification

// (Section 5.2.2)

r = remove(sub , seq)

s = simplify(r)

l = ConstructLattice(s)

point.add_child(sub , l)

return point

Fig. 10. Top-down lattice construction.

Consider the iteration lattice in Figure 8e, which repre-

sents the iteration pattern produced from adding a collapsed

CSR matrix, A, to a compressed vector, b. If b runs out of

values (the sequence 𝑘𝑏 becomes empty), then iteration only

needs to be performed over the collapsed matrix. This is

represented by the child 𝑖𝐴 × 𝑗𝐴 of the top node in the lat-

tice, which is transitioned to when 𝑘𝑏 runs out of elements.

Likewise, if the matrix runs out of elements (the product

becomes empty), iteration only needs to proceed over the

vector, 𝑘𝑏 . This results in the leftmost and rightmost nodes

in the lattice, respectively. Note that the transition to the

node represented by 𝑘𝑏 is labeled only 𝑖𝐴, not 𝑗𝐴. This is due

to the semantics of product: if 𝑗𝐴 runs out of elements, 𝑖𝐴 needs to be stepped forward, which

means that a product only runs out when the first operand runs out of coordinates.

5.2.1 Edge Sequences. Edges in an iteration lattice correspond to sequences that can introduce a

state transition. These are often sequences produced by array levels, but can also correspond to

slices or projections. This is because a slice (or projection) can run out before the sequence it is

slicing (or projecting) runs out, and should induce a state transition when that happens.

We give an algorithm for collecting edges from a sequence expression in Figure 11, the function 𝜒 .

It is a recursive algorithm that generates a set of sub-sequences that correspond to state transitions.

Child lattice points are generated by replacing an edge sequence with an empty set and simplifying

the sequence expression, which we discuss further below.

Consider the expression in Figure 12, which reshapes a compressed vector into a matrix and adds

it to a CSR matrix. The 𝑗 loop over the rows of the matrices changes state when: 1) the compressed

vector runs out of elements; 2) the logical slice of the compressed vector that corresponds to a

single row in the logical matrix runs out; and 3) the CSR matrix row runs out. These three cases

are edges in Figure 12f, as each triggers a state transition.

5.2.2 Sequence Simplification. Sequence simplification follows simple set rules: e.g. if one side of an

intersection is empty, the entire intersection is empty. Likewise, if one side of a union is empty, then

return the other side of the union. Our algorithm treats sparse-and-empty and dense-and-empty

differently. For example, if the set expression is 𝑎 ∪ 𝑏 and 𝑎 is a dense sequence, when 𝑎 becomes

empty (dense-and-empty), the entire union is empty, because the sequence must have been fully

iterated if 𝑎 ran out of elements. This optimization can be seen in Figure 12e, where the dense

𝜒 (𝑖𝑎 ) = {𝑖𝑎 } 𝜒 (𝑥 ∪ 𝑦) = 𝜒 (𝑥 ) ∪ 𝜒 (𝑦)

𝜒 (𝑥 ∩ 𝑦) = 𝜒 (𝑥 ) ∪ 𝜒 (𝑦) 𝜒 (𝑥 × 𝑦) = 𝜒 (𝑥 )

𝜒 (𝑥 ⊔ 𝑦) = 𝜒 (𝑥 ) 𝜒 (𝜋𝑘 (𝑥, 𝑆 ) ) = {𝜋𝑘 (𝑥, 𝑆 ) } ∪ 𝜒 (𝑥 )

𝜒 (𝑥[R] ) = {𝑥[R] } ∪ 𝜒 (𝑥 ) 𝜒 (𝑠 + 𝑥 ) = 𝜒 (𝑥 )

Fig. 11. 𝜒 generates a set of sub-sequences whose removal induces state transitions.
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C(i, j) = split(a(k), k�(i, j))
+ B(i, j)

(a) Array algorithm description.

a: Compressed
B: Dense , Compressed
C: Dense , Dense

(b) Array format description.

C
=

a
+

B

(c) Logical iteration pattern.

forall 𝑖 ∈ 𝜋0 (𝑘𝑎, [𝐼 , 𝐽 ] ) ∪ 𝑖𝐵
forall 𝑗 ∈ 𝜋1 (𝑘𝑎, [𝐼 , 𝐽 ] ) ∪ 𝑗𝐵

𝐶 (𝑖, 𝑗 ) = 𝑎 (𝑘 ) + 𝐵 (𝑖, 𝑗 )

(d) Concrete index notation.

𝜋0 (𝑘𝑎, [𝐼 , 𝐽 ] ) ∪ 𝑖𝐵

𝑖𝐵

∅

𝜋0 (𝑘𝑎 ) 𝑘𝑎

𝑖𝐵

𝑖𝐵

(e) 𝑖’s iteration lattice.

𝜋1 (𝑘𝑎, [𝐼 , 𝐽 ] ) ∪ 𝑗𝐵

𝜋1 (𝑘𝑎, [𝐼 , 𝐽 ] ) 𝑗𝐵

∅

𝑗𝐵 𝜋1 (𝑘𝑎 )𝑘𝑎

𝜋1 (𝑘𝑎 ) 𝑘𝑎 𝑖𝐵

(f) One of the constructed

iteration lattices for a 𝑗 loop.

1 while 𝑖 � 𝜋0 (𝑘𝑎, [𝐼 , 𝐽 ] ) ∪ 𝑖𝐵
2 switch i

3 case 𝜋0 (𝑘𝑎, [𝐼 , 𝐽 ] ) ∪ 𝑖𝐵 :

4 while 𝑗 � 𝜋1 (𝑘𝑎, [𝐼 , 𝐽 ] ) ∪ 𝑗𝐵
5 switch j

6 case 𝜋1 (𝑘𝑎, [𝐼 , 𝐽 ] ) ∪ 𝑗𝐵 :

7 𝐶 (𝑖, 𝑗 ) = 𝑎 (𝑘 ) + 𝐵 (𝑖, 𝑗 )
8 case 𝜋1 (𝑘𝑎, [𝐼 , 𝐽 ] ):
9 𝐶 (𝑖, 𝑗 ) = 𝑎 (𝑘 )
10 case 𝑗𝐵 :

11 𝐶 (𝑖, 𝑗 ) = 𝐵 (𝑖, 𝑗 )
12 while 𝑗 � 𝜋1 (𝑘𝑎, [𝐼 , 𝐽 ] )
13 𝐶 (𝑖, 𝑗 ) = 𝑎 (𝑘 )
14 while 𝑗 � 𝑗𝐵
15 𝐶 (𝑖, 𝑗 ) = 𝐵 (𝑖, 𝑗 )
16 case 𝑖𝐵 :

17 while 𝑗 � 𝑗𝐵
18 𝐶 (𝑖, 𝑗 ) = 𝐵 (𝑖, 𝑗 )
19 while 𝑖 � 𝑖𝐵
20 while 𝑗 � 𝑗𝐵
21 𝐶 (𝑖, 𝑗 ) = 𝐵 (𝑖, 𝑗 )

(g) Control-flow IR.

Fig. 12. Addition of a split compressed vector and a CSR matrix has the same logical iteration pattern as the

multiplication in Figure 9, but requires very different loops. The iteration lattice in (e) highlights the

asymmetrical sequence simplification from treating sparse-and-empty and dense-and-empty as two different

simplification results: when the dense 𝑖𝐵 iterator runs out of coordinates, the sparse 𝜋0 (𝑘𝑎, [𝐼 , 𝐽 ]) iterator
must have run out of elements, so no lattice point is needed to represent iteration over solely 𝜋0 (𝑘𝑎, [𝐼 , 𝐽 ]).

column of a CSR matrix is coiterated with a sparse sequence — when the dense sequence runs out,

the entire union must run out.

5.2.3 Sub-points. Given a lattice point 𝑝 that iterates over a sequence 𝑠 , the sub-points of 𝑝 are

descendant points that represent sequences that are strict subsets of 𝑠 . For example, in Figure 14e,

the sequence 𝑖𝐴 ∪ 𝑖𝐵 has two sub-points, labeled 𝑖𝐴 and 𝑖𝐵 . Sub-points of 𝑝 correspond to a sequence

that represents a strictly simpler state than the state represented by 𝑝 . Not all descendant points

are sub-points due to the complexity of the concatenation operator. Consider the iteration lattice

in Figure 14f; the concatenation operator produces a state transition when 𝑘𝐴 runs out, indicating

a transition to start iterating over the slice of 𝑙𝐵 instead. However, this point is not considered a

sub-point, because it represents a completely disjoint set (it requires 𝑘𝐴 runs out, not just that 𝑘𝐴 is

missing an element). To compute the sub-points of a lattice point 𝑝 , we gather all descendants that

represent a strict subset of 𝑝’s sequence.

5.3 Compiling Lattices to Loops
Iteration lattices are used to generate loops over progressively simpler loop bodies. A lattice always

maintains a partial ordering, because each point has a progressively simpler sequence expression.

The lattice can be compiled to loops by topologically sorting the points, laying them out in order,

and generating a CFIR loop for each point that runs until an edge sequence runs out. A CFIR loop

exits when an edge sequence runs out, as this indicates that the iteration should be passed to a loop

over a simpler sequence expression. The body of a CFIR loop is generated as a conditional over

the sub-points in the lattice, where the bodies of the conditional statements contain recursively

simplified code. We provide the full compilation from CIN forall loops to CFIR loops in Figure 13.
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func CompileForall(idx , seq , body):

// Lattice construction in Figure 10

lattice = ConstructLattice(seq)

points = TopoSort(lattice)

build = 𝜆 p: BuildLoop(p, idx , body)

loops = map(build , points)

return fold(Pair , loops)

func BuildLoop(point , idx , body):

// Simplify loop body based on active

// sequences.

build = 𝜆 sp: Compile(simplify(sp, body))

// Case for each sub -point (Section 5.2.3)

bodies = map(build , point.subs)

cond = Switch(idx , point.subs , bodies)

return While(idx , point.seq , cond)

Fig. 13. Compilation of CIN forall loops to a chain of

CFIR while loops over conditional statements.

Consider the CIN in Figure 12d, where the 𝑖

loop iterates over a projection of a sparse itera-

tor unioned with a dense iterator. This loop gen-

erates the iteration lattice in Figure 12e, which

contains two states, the initial state (top), and a

state that iterates over only the dense iterator

(middle left), for when the sparse iterator runs

out of elements. This iteration lattice compiles

to the two outer loops in Figure 12g, one of

which iterates over the union, and the other

handles the case where the sparse iterator runs

out of elements. Within the first outer loop,

there is control flow to handle the case that

the sparse iterator is at the same coordinate

as the dense iterator, and the case where the

dense iterator contains an element that the projection of the sparse iterator does not have. These

cases within this first loop correspond to sub-states that the computation could be in, avoiding

unnecessary work when the projection of the sparse iterator does not contain a coordinate.

C(i, j) = concat ((A(i, k), slice(B(i, l), l � p, (0, 𝐿
2
, 1))), (k, p) � j)

(a) Array algorithm description.

A: Compressed , Compressed
B: Compressed , Compressed
C: Dense , Dense

(b) Array format description.

C

=

A B

(c) Logical iteration pattern.

forall 𝑖 ∈ 𝑖𝐴 ∪ 𝑖𝐵
forall 𝑗 ∈ 𝑘𝐴 ⊔ 𝑙𝐵 [0:

𝐿
2
:1]

𝐶 (𝑖, 𝑗 ) =concat𝑘,𝑙 (𝐴(𝑖, 𝑘 ), 𝐵 (𝑖, 𝑙 ) )

(d) Concrete index notation.

𝑖𝐴 ∪ 𝑖𝐵

𝑖𝐴 𝑖𝐵

∅

𝑖𝐵 𝑖𝐴

𝑖𝐴 𝑖𝐵

(e) 𝑖’s iteration lattice.

𝑘𝐴

| 𝑘𝐴 | +𝑙𝐵[0: 𝐿
2
:1]

∅

𝑘𝐴

𝑙𝐵[0:
𝐿
2
:1]𝑙𝐵

(f) 𝑗 ’s iteration lattice.

1 while 𝑖 � 𝑖𝐴 ∪ 𝑖𝐵 :

2 switch 𝑖

3 case 𝑖𝐴 ∪ 𝑖𝐵 :

4 while 𝑗 � 𝑘𝐴
5 𝐶 (𝑖, 𝑗 ) = 𝐴(𝑖, 𝑘 )
6 while 𝑗 � |𝑘𝐴 | + 𝑙𝐵 [0 : 𝐿

2
: 1]

7 𝐶 (𝑖, 𝑗 ) = 𝐵 (𝑖, 𝑙 )
8 case 𝑖𝐴:

9 while 𝑗 � 𝑘𝐴
10 𝐶 (𝑖, 𝑗 ) = 𝐴(𝑖, 𝑘 )
11 case 𝑖𝐵 :

12 while 𝑗 � |𝑘𝐴 | + 𝑙𝐵 [0 : 𝐿
2
: 1]

13 𝐶 (𝑖, 𝑗 ) = 𝐵 (𝑖, 𝑙 )
14 while 𝑖 � 𝑖𝐴:

15 while 𝑗 � 𝑘𝐴
16 𝐶 (𝑖, 𝑗 ) = 𝐴(𝑖, 𝑘 )
17 while 𝑖 � 𝑖𝐵 :

18 while 𝑗 � |𝑘𝐴 | + 𝑙𝐵 [0 : 𝐿
2
: 1]

19 𝐶 (𝑖, 𝑗 ) = 𝐵 (𝑖, 𝑙 )

(g) Control-flow IR.

Fig. 14. Concatenation produces a union over the shared dimensions, and iteration lattice construction for 𝑖

generates loops specialized to when a coordinate in the sequence is both sequences or only one, producing

simpler loop bodies in the latter case. Iteration lattice construction for 𝑗 essentially fissions the loop over

concatenated sequences into a pair of loops (lines 4-5 and 6-7 of (g)) that each coiterate a single sequence.

6 CODE GENERATION
In this section, we show how a simple set of primitives compose to produce iteration over any

sequence expression. This final code generation pass uses a simple iterator model that builds on

the indexed stream model of Kovach et al. [2023], a representation used for compiling fused sparse
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1 Dense(String name , String idx ,
2 String size):
3 Init():
4 emit " int {idx}_{name} = 0;"
5

6 Valid ():
7 emit "{idx}_{name} < {size}"
8

9 Eval():
10 emit "{idx}_{name}"
11

12 Equals(i):
13 emit "{idx}_{name} == {i}"
14

15 Next():
16 emit "{idx}_{name }++;"
17

18 Locate(i):
19 emit "{idx}_{name} = {i};"

Fig. 15. Iterator model for a dense dimension.

1 Compressed(String name , String idx ,
2 String lb, String ub):
3 Init():
4 emit " int {idx}p_{name} = {lb};"
5

6 Valid ():
7 emit "{idx}p_{name} < {ub}"
8

9 Eval():
10 emit "{name}_crd[{idx}p_{name }]"
11

12 Equals(i):
13 emit "Eval() == {i}"
14

15 Next():
16 emit "{idx}p_{name }++;"
17

18 Locate(i):
19 emit "{idx}p_{name} = binary_search ({i},
20 {name}_crd , {lb}, {ub});"

Fig. 16. Iterator model for a compressed dimension.

tensor algebra that shows how to iterate over unions and intersections efficiently. We first describe

the iterator model for sequence combinators, then for formats, and lastly provide the complete

code generation algorithm from CFIR to C code.

6.1 Iterator Model
burrito relies on a small set of composable primitives to implement iteration over combinations

of sequences: initialize, valid, evaluate, equals, next, and locate. We describe each below, giving

examples of the iterator model for sequence products in Figure 17 and slicing in Figure 18. Note

that Figure 18 shows a generalization of prior work [Henry et al. 2021], which supported slicing

only array dimensions, while our algorithm can generate code that iterates over the slice of any
sequence.

Initialize Initialization handles declaring any necessary iteration variables and locating the

first non-zero element of a sequence.

Valid Valid is a check that the sequence has not run out of coordinates, meaning no sub-

sequence has run out. This is a check that no iterators have gone out of bounds, and slices

and projections are still within a valid range.

Evaluate Evaluation computes the current coordinate value of the sequence. For unions and

intersections, this takes the minimum of the two sequences, but for sequence combinators,

a sequence value (or values) must be re-mapped to the new space. For example, a product

applies the strided offset formula to map two sequence coordinates to a single sequence

coordinate. Likewise, a slice must re-map a sequence value to the sliced coordinate space.

Equals An equality test checks whether a sequence is currently at a coordinate. For unions

and intersections, equality simply means that both sequence operands are equal to the

given value. For combinators, we re-map the provided value into the spaces spanned by the

operand sequences. This is used to compile CFIR’s conditional statements (see Figure 20a).

Next The next method steps forward any sequences that are currently behind. For array levels,

unions, and intersections, this performs the same conditional updates as taco (i.e. line 25

of Figure 19). For sequence combinators, we define modular code generators for stepping

forward a sequence.

Locate Location moves physical iterators to point to a specific logical coordinate. Section 5.1.1

described cases where random-access into a sequence is asymptotically preferable, and the

locate interface is used to support this optimization. Many sequence operators are invertible
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1 Product(Seq a, Seq b):
2 Init():
3 emit Init(a); Init(b)
4 emit while(Valid(a) && !Valid(b))
5 emit { Next(a); Init(b); }
6

7 Valid ():
8 emit Valid(a) && Valid(b)
9

10 Eval():
11 emit (Eval(a) * |b|) + Eval(b)
12

13 Equals(i):
14 emit Equals(i/|b|,a) && Equals(i%|b|,b)
15

16 Next():
17 emit Next(b)
18 emit while(Valid(a) && !Valid(b))
19 emit { Next(a); Init(b); }
20

21 Locate(i):
22 emit Locate(i/|b|,a); Locate(i%|b|,b)

Fig. 17. Iterator interface for sequence products.

1 Slice(Seq a, Expr s, Expr e, Expr r):
2 Init():
3 emit Init(a)
4 emit Locate(a, s)
5 emit while(Valid () && ((Eval(a)-s)%r))
6 emit { Next(a); }
7

8 Valid ():
9 emit Valid(a) && Eval(a) < e
10

11 Eval():
12 emit (Eval(a) - s) / r
13

14 Equals(i):
15 emit Equals ((i * r) + s, a)
16

17 Next():
18 emit do { Next(a) }
19 emit while(Valid () && ((Eval(a)-s)%r))
20

21 Locate(i):
22 emit Locate ((i * r) + s, a)

Fig. 18. Iterator interface for sequence slices.

1 int i_A = 0; // init 𝑖𝐴
2 int jp_A = A_pos[i_A]; // init 𝑗𝐴
3 while ((i_A < I) && !(jp_A < A_pos[i_A+1])) { // valid 𝑖𝐴 && !valid 𝑗𝐴
4 i_A++; // next 𝑖𝐴
5 jp_A = A_pos[i_A]; // init 𝑗𝐴
6 }

7 int kp_b = b_pos [0]; // init 𝑘𝑏
8 while ((i_A < N) && (jp_A < A_pos[i_A+1]) && (kp_b < b_pos [1])) { // valid 𝑖𝐴 × 𝑗𝐴 ∪ 𝑘𝑏
9 int k = min((i_A * M) + A_crd[jp_A], b_crd[kp_b]); // eval (𝑖𝐴 × 𝑗𝐴 ) ∪ 𝑘𝑏
10 if (((i_A == k / M) && (A_crd[jp_A] == k % M)) && // equals 𝑘, (𝑖𝐴 × 𝑗𝐴 ) ∪ 𝑘𝑏
11 (k == b_crd[kp_b])) {

12 c[k] = A.values[jp_A] + b.values[kp_b];

13 } else if ((i_A == k / M) && (A_crd[jp_A] == k % M)) { // equals 𝑘, 𝑖𝐴 × 𝑗𝐴
14 c[k] = A.values[jp_A];

15 } else if (k == b_crd[kp_b]) { // equals 𝑘, 𝑘𝑏
16 c[k] = b.values[kp_b];

17 }

18 if (k == ((i_A * M) + A_crd[jp_A])) { // next 𝑘, (𝑖𝐴 × 𝑗𝐴 )
19 jp_A++; // next 𝑗𝐴
20 while ((i_A < N) && !(jp_A < A_pos[i_A+1])) {

21 i_A++; // next 𝑖𝐴
22 jp_A = A_pos[i_A]; // init 𝑗𝐴
23 }

24 }

25 kp_b += (k == b_crd[kp_b]); // next 𝑘, 𝑘𝑏
26 }

Fig. 19. Compilation of the first loop of Figure 8f, which iterates over a collapsed CSR matrix, A, and adds it

to a compressed vector, b.

and this property can be used to locate through them, and base data structure formats often

support fast random access (i.e. dense or hashed formats).

6.1.1 Formats. The iterator model for array formats is equivalent to the base case of the recursive

algorithm for generating iteration code, as tensor dimensions are the main primitive in sequence

expressions. As examples, we provide the implementations of dense and compressed formats in

Figures 15 and 16, respectively. Extending burrito to support an additional sparse format only

requires implementing the iterator interface for that format type. Our prototype compiler supports
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taco’s dense, compressed, and singleton level formats [Chou et al. 2018], which compose to express

many sparse data structures, such as CSR, CSC, COO, and variants.

6.1.2 Combinators. The iterator model fully composes to enable code generation for all sequence

combinators. As examples, we provide the implementation of the iterator model for sequence prod-

ucts and slices in Figures 17 and 18, respectively. These implementations show the composability

of this interface. We also illustrate a labeled example of the full C code generated from Figure 8 in

Figure 19, with line labels corresponding to the interface that generated each line.

6.2 Compiling CFIR
We give the algorithm for compiling CFIR based on the iterator model in Figure 20a. Intuitively,

each loop iterates until some sub-sequence runs out (the state is permanently changed), and after

execution of a loop’s body, steps the sequence forward. Conditional statements are used to evaluate

which sub-state the iterator may currently be in, and generate if-else chains. The iterator model

allows for a very simple code generation algorithm to compile the abstract while loops and switch

statements of CFIR to the complex irregular loops over physical data structures required to support

compute and shape operators.

7 EVALUATION
Our evaluation proves the following claims:

(1) Generated shape operators can match the performance of hand-written shape operators.

(2) Portability across data structures offers performance benefits over fixed-format kernels.

(3) Fusion of shape and compute operators can improve performance.

1 func CompileCFIR(stmt):
2 match stmt with

3 | While (idx , seq , locs , body) ->

4 emit Init(seq)
5 emit while (Valid(seq)) {

6 emit int idx = Eval(seq);
7 for a, b ∈ locs

8 emit Locate(Eval(a), b)

9 emit CompileCFIR(body)
10 emit Next(seq) }

11 | Switch (idx , seqs , bodies) ->

12 emit i f (Equals(idx , seqs [0])) {

13 emit CompileCFIR(bodies [0]) }

14 for s, b ∈ zip(seqs , bodies)[1:]

15 emit else i f (Equals(idx , s)) {

16 emit CompileCFIR(b) }

17 | Pair (cfir0 , cfir1) ->

18 emit CompileCFIR(cfir0)
19 emit CompileCFIR(cfir1)
20 | Assign (array , idxs , expr) ->

21 emit CompileWrite(array , idxs)

22 emit CompileExpr(expr)
23 | Reduce (array , idxs , expr) ->

24 emit CompileReduction(array , idxs)

25 emit CompileExpr(expr)

(a) Recursive codegen via the iterator model.

4

5

6

8

4

5

6

12

21-22

13

10

10

int kp_a = a_pos [0];

while (kp_a < a_pos [1]) {

int i = a_crd[kp_a] / J;

int i_B = i;

int jp_B = B_pos[i];

while ((kp_a < a_pos [1]) &&

(i == a_crd[kp_a] / J) &&

(jp_B < B_pos[i_B+1])) {

int j0 = a_crd[kp_a] % J;

int j1 = B_crd[jp_B];

int j = min(j0, j1);

if ((j == j0) && (j == j1)) {

C[i*J + j] = a[kp_a] * B[jp_B];

}

kp_a += (j == j0);

jp_B += (j == j1);

}

while ((kp_a < a_pos [1]) &&

(i == a_crd[kp_a] / J)) {

kp_a++;

}

}

(b) Generated code from the CFIR in Figure 9e.

Fig. 20. (a) C code generation from CFIR. (b) shows the generated code for C(i, j) = split(a(k), k �
(i, j)) * B(i, j), where a is a compressed vector and B is a 𝐼 × 𝐽 CSR matrix. The labels to the left in (b)

correspond to the line numbers in (a) that generated that particular line of code.
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We first describe the existing state-of-the-art libraries that we compare to in Section 7.1, provide

our benchmarking methodology in Section 7.2, and then provide evidence for the above claims in

the following sections.

7.1 Baselines
We compare burrito-generated code to scipy.sparse and pydata/sparse, the two state-of-the-

art libraries that have the most complete set of shape and compute operators. For shape operators,

both of these libraries follow a simple reduction approach. Each shape operator is implemented

for one or a few sparse data structures, and calling a shape operator on an unsupported sparse

data structure incurs a conversion cost to convert to a supported format. For example, to reshape a
CSR matrix with scipy, the library first converts to the CSR matrix to COO (the COOrdinate list

data structure) and then calls COO.reshape. Likewise, when a user requests a non-standard output

format (i.e. reshape a COO matrix into a CSR matrix), the library will perform the operation with

a supported implementation and then convert the output to the requested output format. Note

that for sparse tensor algebra alone, burrito’s compilation technique is equivalent to taco’s, and

achieves the same performance.

7.2 Methodology and Benchmark Notation
We evaluate on an Apple M1 Pro (3.2 GHz, 8 cores) with 16 GB of RAM. All benchmarks are

single-threaded. We use the 12 largest SuiteSparse matrices that have indices fitting in 32 (unsigned)

bits. These matrices span multiple domains, including computer vision, structural engineering,

economics, graph analytics, and computational fluid dynamics. Each benchmark record is the

minimum time of 5 iterations. For benchmarks that require multiple matrices (i.e. concatenation),

we first split the SuiteSparse matrix in half, and use the halves as operands to concatenation. For

fusion benchmarks, we use the same matrix shifted by a small number (10), due to the need for

shape compatibility, as in prior evaluations of sparse tensor algebra [Kjolstad et al. 2017]. Note that

burrito’s compile times are interactive, so compilation does not introduce noticeable overhead.

We label benchmarks with short descriptions of their compute kernels. vstack means vertical
stacking (concatenation along the first axis), hstack means horizontal stacking (concatenation

along the second axis), and reshape is a collapse followed by a split. Benchmarks label operands

with their array types (i.e. CSR or COO), and single letter labels ("C" or "D") correspond to randomly-

generated vectors ("Compressed" and "Dense", respectively).

7.3 Comparison to Hand-written Kernels
We compare burrito’s generated shape operators to shape operators that scipy.sparse and

pydata/sparse whose implementations do not perform data structure conversions. This com-

parison shows that a compilation-based approach can match the performance of hand-written

code.

The comparison to scipy.sparse is shown in Figure 21. On stacking COO matrices and slicing

CSR matrices, performance is matched. On reshaping COO and horizontally stacking CSR, burrito

out-performs scipy. Both of these performance benefits come from the fact that scipy’s implemen-

tations allocate a small number of temporary numpy arrays to perform conversions, while burrito

allocates only the output array. On vertical stacking CSR matrices, scipy out-performs burrito:

that particular operation is little more than a few memcpys, and scipy has a highly optimized (vec-

torized) implementation of it, while the underlying C compiler used to compile burrito’s generated

code did not generate the same optimized memcpys. However, in general, these benchmarks show

that generated code can match or exceed the performance of hand-written reshape kernels.
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Fig. 21. Runtime speed-up over scipy.sparse of shape operators applied to SuiteSparse matrices, for kernels

that do not perform data structure conversions.
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Fig. 22. Runtime speed-up over pydata/sparse of shape operators applied to SuiteSparse matrices, for

kernels that do not perform data structure conversions.
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(a) Runtime speed-up over scipy.sparse.
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(b) Runtime speed-up over pydata/sparse.

Fig. 23. Evaluation of shape operators where existing SOTA techniques perform data structure conversions

on at least one input array in order to perform the shaping operation.

We also compare to pydata/sparse is shown in Figure 22. burrito’s generated code generally

severely out-performs pydata because pydata’s implementions are dimensionality-agnostic (i.e.

not specialized to a 2D COO, but works for an 𝑛D COO matrix), which is beneficial for reducing

overall code size but not beneficial for code performance. This highlights the cost of generality in

these systems. Like scipy, pydata out-performs burrito on vertically stacking CSR matrices, due

to the same memcpy optimization.
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Fig. 24. Runtime speed-up over scipy.sparse of shape operators applied to SuiteSparse matrices, for kernels

that scipy.sparse requires data structure conversions on the output of the shape operator.
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Fig. 25. Runtime speed-up over pydata/sparse of shape operators applied to SuiteSparse matrices, for

kernels that pydata/sparse requires data structure conversions on the output of the shape operator.
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Fig. 26. Runtime speed-up over burrito-generated unfused code. The labeled geomeans show the speed-up

of burrito-generated fused code.

7.4 Comparison to Reduced Kernels
To show the importance of allowing code to specialize to particular input and output data structures,

we evaluate shape operators with data structures that the state-of-the-art libraries perform data

structure conversions to compute. In Figure 23, we evaluate burrito generated code against

implementations that first perform a data structure conversion on an input array before applying the

hand-written shape operator. Figure 24 and Figure 25 show the performance difference of applying

a shape operator with an output format that is different from the standard library implementation,

requiring a data structure conversion following the shape operator. In each of these benchmarks,

we see that generating code specialized to particular input and output data structures (avoiding

data structure conversions) achieves performance benefits. burrito generated code also uses less

memory, as it only allocates the output array, but not any temporary arrays.

7.5 Shape and Compute Operator Fusion
To evaluate the performance benefits of fusing shape with compute operators, we perform a series

of self-comparisons on kernels with both shape and compute operators. For relevance to the
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state-of-the-art, we also compare to scipy.sparse, the faster of the two libraries that we evaluate

against in the prior sections. Figure 26 provides a performance evaluation of the speed-up gained

by fusing shape and compute kernels. The benefit of fusing such operators is largely a result from

reduced memory allocation, as there is no need to allocate expensive intermediate temporaries.

There are some cases where scipy.sparse out-performs the unfused burrito-generated code (e.g.

with the fused SpMV, where scipy.sparse’s fast vstack, discussed in Section 7.3, out-performs

burrito’s vstack), but fused burrito-generated code performs best across these benchmarks.

8 RELATEDWORKS
Sparse Shape Operator Compilation. As discussed in the introduction, most prior work in sparse

array compilation focuses on compiling compute operators [Bik et al. 2022; Kjolstad et al. 2017;

Zhao et al. 2022], with the exceptions of two compilers: Henry et al. [2021] extended taco to

support iterating over slices of array operands, and allows computing over a slice, but does not

support slicing intermediate computation, which limits fusion options; Looplets [Ahrens et al.

2023] can be used to express the concatenation of arrays, but does not express concatenation as an

operator in the front-end language. burrito explicitly expresses shape operators in the front-end

language, and has no restrictions on mixing compute and shape operators.

Abstracting Sparse Iteration. There are decades worth of work in abstracting sparse iteration.

The database community relied on the iterator model [Graefe 1994] to implement many relational

operators, and more recently, Kovach et al. [2023] introduced the stream model for iterating over

sparse arrays, which supports a similar iterator interface based on a model equivalent to init-valid-
next. Our iterator model builds on Kovach et al. [2023], and we introduce additional primitives to

support shape operators. Chou et al. [2018], Looplets [Ahrens et al. 2023], and SparseTIR [Ye et al.

2023] provide various abstractions over sparse data formats, but do not use these abstractions to

compile shape operators.

Avoiding Discordant Traversals. Sparse tensor algebra has a long history of shaping computation

to avoid discordant traversals [Bik 1996; Bik et al. 1994; Duff et al. 1990; George and Liu 1981;

Gustavson 1972; Pissanetsky 1984; Tewarson 1973; Zlatev 1991], and a compiler for efficient sparse

shape operators must do the same. Kjolstad et al. [2019] introduced a simple loop IR and scheduling

rewrites that allow for avoiding discordant traversals, and burrito uses that IR (CIN) and supports

the same transformations, for the same reasons.

Sparse Array Libraries. There are a number of sparse array libraries [Abadi et al. 2016; Paszke

et al. 2019; Virtanen et al. 2020] that implement some number of shape operators. We compare to

the most complete of these, scipy.sparse and pydata/sparse, in Section 7. These array libraries

are feature-incomplete, generally only supporting a small number of array formats and a small

number of operators. burrito can be used to generate custom shape operator implementations for

each of these libraries, or replace them entirely.

Array Languages. There are decades of work in dense array programming languages [Bader and

Kolda 2008; Harris et al. 2020; Henriksen et al. 2017; Iverson 1962; Liu et al. 2022; Ragan-Kelley et al.

2013; Steuwer et al. 2017], many of which support shape operators, but only for dense arrays. For

many of these languages, shape operators correspond to zero-cost array metadata edits, and do not

require iteration over the data like sparse shape operators do.

Staged Compilation.While the database community typically uses the iterator model as a runtime

technique, recent work [Tahboub et al. 2018; Tahboub and Rompf 2020] applies ideas from partial

evaluation to enable using the iterator model for code generation. burrito’s code generation can

be seen as an application of the same idea to compiling iteration over sequence expressions.
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9 CONCLUSION
We describe the first compiler for a sparse array programming language with both shape and

compute operators. We show how a simple declarative array language can be compiled to imperative

loops over sequences, how to generate optimized loops that coiterate these sequences, and lastly,

how to generate data-structure-specific code via a simple iterator model. With these ideas, sparse

array programming moves one step closer to the completeness that dense array programming

systems have long since achieved.

ACKNOWLEDGMENTS
REFERENCES
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit

Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A

System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (Savannah, GA, USA) (OSDI’16). USENIX Association, USA, 265–283.

Hameer Abbasi. 2018. Sparse: a more modern sparse array library. In Proceedings of the 17th python in science conference.
27–30.

Willow Ahrens, Daniel Donenfeld, Fredrik Kjolstad, and Saman Amarasinghe. 2023. Looplets: A Language for Structured

Coiteration. In Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization (Montréal,

QC, Canada) (CGO 2023). Association for Computing Machinery, New York, NY, USA, 41–54. https://doi.org/10.1145/

3579990.3580020

Brett W. Bader and Tamara G. Kolda. 2008. Efficient MATLAB Computations with Sparse and Factored Tensors. SIAM
Journal on Scientific Computing 30, 1 (2008), 205–231.

Aart Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasilache, Bixia Zheng, and Fredrik Kjolstad. 2022. Compiler

Support for Sparse Tensor Computations in MLIR. ACM Trans. Archit. Code Optim. 19, 4, Article 50 (sep 2022), 25 pages.

https://doi.org/10.1145/3544559

Aart J.C. Bik. 1996. Compiler Support for Sparse Matrix Computations. Ph. D. Dissertation. Department of Computer Science,

Leiden University. ISBN 90-9009442-3.

Aart J.C. Bik, Peter M.W. Knijenburg, and Harry A.G. Wijshoff. 1994. Reshaping Access Patterns for Generating Sparse

Codes. In Proceedings of the 7th International Workshop on Languages and Compilers for Parallel Computing (LCPC ’94).
Springer-Verlag, Berlin, Heidelberg, 406–420.

William E. Boyse and Andrew A. Seidl. 1996. A Block QMR Method for Computing Multiple Simultaneous Solutions to

Complex Symmetric Systems. SIAM Journal on Scientific Computing 17, 1 (1996), 263–274.

Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format Abstraction for Sparse Tensor Algebra Compilers.

Proc. ACM Program. Lang. 2, OOPSLA, Article 123 (oct 2018), 30 pages. https://doi.org/10.1145/3276493

Iain S. Duff, A.M. Erisman, and J.K. Reid. 1990. Direct Methods for Sparse Matrices. Oxford Science Publications, Oxford.

Alan George and JosephW.H. Liu. 1981. Computer Solution of Large Sparse Positive Definite Systems. Prentice Hall, Englewood
Cliffs, New York.

G. Graefe. 1994. Volcano— An Extensible and Parallel Query Evaluation System. IEEE Trans. on Knowl. and Data Eng. 6, 1
(feb 1994), 120–135. https://doi.org/10.1109/69.273032

Fred G. Gustavson. 1972. Some Basic Techniques for Solving Sparse Systems of Linear Equations. In Sparse Matrices and
Their Applications, Donald J. Rose and Ralph A. Willoughby (Eds.). Plenum Press, New York, NY, 41–52.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser,

Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk,

Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin

Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array

programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. https://doi.org/10.1038/s41586-020-2649-2

Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cosmin E. Oancea. 2017. Futhark: Purely

Functional GPU-Programming with Nested Parallelism and in-Place Array Updates. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). Association
for Computing Machinery, New York, NY, USA, 556–571. https://doi.org/10.1145/3062341.3062354

Rawn Henry, Olivia Hsu, Rohan Yadav, Stephen Chou, Kunle Olukotun, Saman Amarasinghe, and Fredrik Kjolstad. 2021.

Compilation of Sparse Array Programming Models. Proc. ACM Program. Lang. 5, OOPSLA, Article 128 (oct 2021), 29 pages.
https://doi.org/10.1145/3485505

https://doi.org/10.1145/3579990.3580020
https://doi.org/10.1145/3579990.3580020
https://doi.org/10.1145/3544559
https://doi.org/10.1145/3276493
https://doi.org/10.1109/69.273032
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3485505


1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Alexander J. Root, Bobby Yan, Peiming Liu, Aart J.C. Bik, and Fredrik Kjolstad

Kenneth E. Iverson. 1962. A Programming Language. In Proceedings of the May 1-3, 1962, Spring Joint Computer Conference
(San Francisco, California) (AIEE-IRE ’62 (Spring)). Association for Computing Machinery, New York, NY, USA, 345–351.

https://doi.org/10.1145/1460833.1460872

Fredrik Kjolstad,WillowAhrens, Shoaib Kamil, and SamanAmarasinghe. 2019. Tensor Algebra CompilationwithWorkspaces.

In Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization (Washington, DC,

USA) (CGO 2019). IEEE Press, New York, NY, USA, 180–192.

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. 2017. The Tensor Algebra Compiler.

Proc. ACM Program. Lang. 1, OOPSLA, Article 77 (oct 2017), 29 pages. https://doi.org/10.1145/3133901

Scott Kovach, Praneeth Kolichala, Tiancheng Gu, and Fredrik Kjolstad. 2023. Indexed Streams: A Formal Intermediate

Representation for Fused Contraction Programs. Proc. ACM Program. Lang. 7, PLDI, Article 154 (jun 2023), 25 pages.

https://doi.org/10.1145/3591268

Amanda Liu, Gilbert Louis Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley. 2022. Verified Tensor-Program Op-

timization via High-Level Scheduling Rewrites. Proc. ACM Program. Lang. 6, POPL, Article 55 (jan 2022), 28 pages.

https://doi.org/10.1145/3498717

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,

Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. Curran Associates Inc., Red Hook, NY, USA.

Sergio Pissanetsky. 1984. Sparse Matrix Technology. Academic Press, London.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe. 2013.

Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines.

In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (Seattle,

Washington, USA) (PLDI ’13). Association for Computing Machinery, New York, NY, USA, 519–530. https://doi.org/10.

1145/2491956.2462176

Justin Solomon. 2015. Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics. A. K. Peters,
Ltd., USA.

Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017. Lift: a functional data-parallel IR for high-performance

GPU code generation. In Proceedings of the 2017 International Symposium on Code Generation and Optimization, CGO
2017, Austin, TX, USA, February 4-8, 2017, Vijay Janapa Reddi, Aaron Smith, and Lingjia Tang (Eds.). ACM, New York, NY,

USA, 74–85. http://dl.acm.org/citation.cfm?id=3049841

Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. 2018. How to Architect a Query Compiler, Revisited. In Proceedings
of the 2018 International Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing

Machinery, New York, NY, USA, 307–322. https://doi.org/10.1145/3183713.3196893

Ruby Y. Tahboub and Tiark Rompf. 2020. Architecting a Query Compiler for Spatial Workloads. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for

Computing Machinery, New York, NY, USA, 2103–2118. https://doi.org/10.1145/3318464.3389701

Reginal P. Tewarson. 1973. Sparse Matrices. Academic Press, New York, NY.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is All You Need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 6000–6010.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,

Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod

Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,

Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R.

Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.

2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261–272.

https://doi.org/10.1038/s41592-019-0686-2

Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. 2023. SparseTIR: Composable Abstractions for Sparse

Compilation in Deep Learning. In Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3 (Vancouver, BC, Canada) (ASPLOS 2023). Association for

Computing Machinery, New York, NY, USA, 660–678. https://doi.org/10.1145/3582016.3582047

Tuowen Zhao, Tobi Popoola, Mary Hall, Catherine Olschanowsky, and Michelle Strout. 2022. Polyhedral Specification and

Code Generation of Sparse Tensor Contraction with Co-Iteration. ACM Trans. Archit. Code Optim. 20, 1, Article 16 (dec
2022), 26 pages. https://doi.org/10.1145/3566054

Zahari Zlatev. 1991. Computational Methods for General Sparse Matrices. Kluwer Academic Publishers, Dordrecht.

https://doi.org/10.1145/1460833.1460872
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3591268
https://doi.org/10.1145/3498717
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
http://dl.acm.org/citation.cfm?id=3049841
https://doi.org/10.1145/3183713.3196893
https://doi.org/10.1145/3318464.3389701
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/3582016.3582047
https://doi.org/10.1145/3566054

	Abstract
	1 Introduction
	2 Overview
	3 Shape Operators
	3.1 Operator Definitions
	3.2 Shape Inference

	4 Sequence Expressions
	4.1 Sequence Combinator Semantics
	4.2 Sequence Combinator Construction

	5 Compiling to Coiterating Loops
	5.1 Control Flow Intermediate Representation
	5.2 Generalized Iteration Lattices
	5.3 Compiling Lattices to Loops

	6 Code Generation
	6.1 Iterator Model
	6.2 Compiling CFIR

	7 Evaluation
	7.1 Baselines
	7.2 Methodology and Benchmark Notation
	7.3 Comparison to Hand-written Kernels
	7.4 Comparison to Reduced Kernels
	7.5 Shape and Compute Operator Fusion

	8 Related Works
	9 Conclusion
	Acknowledgments
	References

